scholarly journals Stochastic Optimal Control as a Theory of Brain-Machine Interface Operation

2013 ◽  
Vol 25 (2) ◽  
pp. 374-417 ◽  
Author(s):  
Manuel Lagang ◽  
Lakshminarayan Srinivasan

The closed-loop operation of brain-machine interfaces (BMI) provides a framework to study the mechanisms behind neural control through a restricted output channel, with emerging clinical applications to stroke, degenerative disease, and trauma. Despite significant empirically driven improvements in closed-loop BMI systems, a fundamental, experimentally validated theory of closed-loop BMI operation is lacking. Here we propose a compact model based on stochastic optimal control to describe the brain in skillfully operating canonical decoding algorithms. The model produces goal-directed BMI movements with sensory feedback and intrinsically noisy neural output signals. Various experimentally validated phenomena emerge naturally from this model, including performance deterioration with bin width, compensation of biased decoders, and shifts in tuning curves between arm control and BMI control. Analysis of the model provides insight into possible mechanisms underlying these behaviors, with testable predictions. Spike binning may erode performance in part from intrinsic control-dependent constraints, regardless of decoding accuracy. In compensating decoder bias, the brain may incur an energetic cost associated with action potential production. Tuning curve shifts, seen after the mastery of a BMI-based skill, may reflect the brain's implementation of a new closed-loop control policy. The direction and magnitude of tuning curve shifts may be altered by decoder structure, ensemble size, and the costs of closed-loop control. Looking forward, the model provides a framework for the design and simulated testing of an emerging class of BMI algorithms that seek to directly exploit the presence of a human in the loop.

2014 ◽  
Vol 2014 ◽  
pp. 1-16
Author(s):  
S. Woods ◽  
W. Szyszkowski

A method of solving optimal manoeuvre control of linear underactuated mechanical systems is presented. The nonintegrable constraints present in such systems are handled by adding dummy actuators and then by applying Lagrange multipliers to reduce their action to zero. The open- and closed-loop control schemes can be analyzed. The method, referred to as the constrained modal space optimal control (CMSOC), is illustrated in the examples of gantry crane operations.


2021 ◽  
Author(s):  
Sourish Chakravarty ◽  
Jacob A Donoghue ◽  
Ayan S Waite ◽  
Meredith Mahnke ◽  
Indie C Garwood ◽  
...  

Continuous monitoring of electroencephalogram (EEG) recordings in humans under general anesthesia (GA) has demonstrated that changes in EEG dynamics induced by an anesthetic drug are reliably associated with the altered arousal states caused by the drug. This observation suggests that an intelligent, closed-loop anesthesia delivery (CLAD) system operating in real-time could track EEG dynamics and control the infusion rate of a programmable pump to precisely maintain unconsciousness. The United States FDA acknowledges the potential benefits of such automatic physiological closed-loop control devices for patient care. Bringing these devices into clinical practice requires establishing their feasibility in suitable animal models. Therefore, given the close neurophysiological proximity between human and non-human primates (NHPs), we address this problem by developing and validating a propofol CLAD system in rhesus macaques. Our CLAD system has three key components: (1) a data acquisition system that records cortical local field potentials (LFPs) from an NHP in real-time; (2) a computer executing our CLAD algorithm that takes in the LFP signals as input and outputs infusion rates; and (3) a computer-controlled infusion pump that administers intravenous propofol. Our CLAD system controls an empirically-determined LFP marker of unconsciousness (MOU) at a user-prescribed target value by updating every 20 seconds the propofol infusion rate based on real-time processing of the LFP signal. The MOU is the instantaneous power in the 20 to 30 Hz band of the LFP spectrogram. Every cycle (duration ~ 20 sec), our CLAD algorithm updates the MOU estimate and uses a robust optimal control strategy to adjust the propofol infusion rate based on the instantaneous error. This error is computed as the difference between the current and the user-prescribed target MOU values. Using neural recordings from multiple NHP anesthesia sessions, we first established that our chosen MOU signal was strongly correlated with propofol-induced decreased spiking activity which itself has been shown earlier to be associated with the level of unconsciousness in NHPs. Then we designed robust optimal control strategies that used subject-specific pharmacokinetic-pharmacodynamic models describing the MOU dynamics due to propofol infusion rate changes. Finally, we achieved safe and efficient closed-loop control of level of unconsciousness in 9 CLAD experiments involving 2 NHPs and 2 different 125 min long target MOU profiles with three target MOU changes within a given experiment. Our CLAD system performs stably, accurately and robustly across a total of 1125 min of closed-loop control. The CLAD performance measures, represented as median (25th percentile, 75th percentile), are 3.13 % (2.62%, 3.53%) for inaccuracy, 0.54 %(-0.31%, 0.89%) for bias, -0.02%/min (-0.06%/min, 0.00%/min) for divergence, and 3% (2.49%, 3.59%) for wobble. These performance measures were comparable or superior to previously reported CLAD performance measures from clinical studies (conducted outside USA) as well as rodent-based studies. The key innovations here are: (1) a pre-clinical NHP model for CLAD development and testing, (2) a neuroscience-informed LFP-based MOU for CLAD, (3) parsimonious, pharmacology-informed models to describe MOU dynamics under propofol infusion in rhesus macaques, (4) a novel numerical testing framework for propofol CLAD that incorporates a principled optimal robust control strategy for titrating propofol, and finally (5) experimental findings demonstrating the feasibility of stable, accurate and robust CLAD in the NHP model. Our NHP-based CLAD framework provides a principled pre-clinical research platform that can form the foundation for future clinical studies.


2012 ◽  
Vol 220 (1) ◽  
pp. 3-9 ◽  
Author(s):  
Sandra Sülzenbrück

For the effective use of modern tools, the inherent visuo-motor transformation needs to be mastered. The successful adjustment to and learning of these transformations crucially depends on practice conditions, particularly on the type of visual feedback during practice. Here, a review about empirical research exploring the influence of continuous and terminal visual feedback during practice on the mastery of visuo-motor transformations is provided. Two studies investigating the impact of the type of visual feedback on either direction-dependent visuo-motor gains or the complex visuo-motor transformation of a virtual two-sided lever are presented in more detail. The findings of these studies indicate that the continuous availability of visual feedback supports performance when closed-loop control is possible, but impairs performance when visual input is no longer available. Different approaches to explain these performance differences due to the type of visual feedback during practice are considered. For example, these differences could reflect a process of re-optimization of motor planning in a novel environment or represent effects of the specificity of practice. Furthermore, differences in the allocation of attention during movements with terminal and continuous visual feedback could account for the observed differences.


Diabetes ◽  
2019 ◽  
Vol 68 (Supplement 1) ◽  
pp. 118-LB
Author(s):  
CAROL J. LEVY ◽  
GRENYE OMALLEY ◽  
SUE A. BROWN ◽  
DAN RAGHINARU ◽  
YOGISH C. KUDVA ◽  
...  

Diabetes ◽  
2020 ◽  
Vol 69 (Supplement 1) ◽  
pp. 101-LB
Author(s):  
SUE A. BROWN ◽  
DAN RAGHINARU ◽  
BRUCE A. BUCKINGHAM ◽  
YOGISH C. KUDVA ◽  
LORI M. LAFFEL ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document