scholarly journals Dendrites Enable a Robust Mechanism for Neuronal Stimulus Selectivity

2017 ◽  
Vol 29 (9) ◽  
pp. 2511-2527 ◽  
Author(s):  
Romain D. Cazé ◽  
Sarah Jarvis ◽  
Amanda J. Foust ◽  
Simon R. Schultz

Hearing, vision, touch: underlying all of these senses is stimulus selectivity, a robust information processing operation in which cortical neurons respond more to some stimuli than to others. Previous models assume that these neurons receive the highest weighted input from an ensemble encoding the preferred stimulus, but dendrites enable other possibilities. Nonlinear dendritic processing can produce stimulus selectivity based on the spatial distribution of synapses, even if the total preferred stimulus weight does not exceed that of nonpreferred stimuli. Using a multi-subunit nonlinear model, we demonstrate that stimulus selectivity can arise from the spatial distribution of synapses. We propose this as a general mechanism for information processing by neurons possessing dendritic trees. Moreover, we show that this implementation of stimulus selectivity increases the neuron's robustness to synaptic and dendritic failure. Importantly, our model can maintain stimulus selectivity for a larger range of loss of synapses or dendrites than an equivalent linear model. We then use a layer 2/3 biophysical neuron model to show that our implementation is consistent with two recent experimental observations: (1) one can observe a mixture of selectivities in dendrites that can differ from the somatic selectivity, and (2) hyperpolarization can broaden somatic tuning without affecting dendritic tuning. Our model predicts that an initially nonselective neuron can become selective when depolarized. In addition to motivating new experiments, the model's increased robustness to synapses and dendrites loss provides a starting point for fault-resistant neuromorphic chip development.

2015 ◽  
Author(s):  
Romain D. Cazé ◽  
Sarah Jarvis ◽  
Amanda J. Foust ◽  
Simon R. Schultz

AbstractHearing, vision, touch-underlying all of these senses is stimulus selectivity, a robust information processing operation in which cortical neurons respond more to some stimuli than to others. Previous models assume that these neurons receive the highest weighted input from an ensemble encoding the preferred stimulus, but dendrites enable other possibilities. Non-linear dendritic processing can produce stimulus selectivity based on the spatial distribution of synapses, even if the total preferred stimulus weight does not exceed that of non-preferred stimuli. Using a multi-subunit non-linear model, we demonstrate that stimulus selectivity can arise from the spatial distribution of synapses. We propose this as a general mechanism for information processing by neurons possessing dendritic trees. Moreover, we show that this implementation of stimulus selectivity increases the neuron's robustness to synaptic and dendritic failure. Importantly, our model can maintain stimulus selectivity for a larger range of synapses or dendrites loss than an equivalent linear model. We then use a layer 2/3 biophysical neuron model to show that our implementation is consistent with two recent experimental observations: (1) one can observe a mixture of selectivities in dendrites, that can differ from the somatic selectivity, and (2) hyperpolarization can broaden somatic tuning without affecting dendritic tuning. Our model predicts that an initially non-selective neuron can become selective when depolarized. In addition to motivating new experiments, the model's increased robustness to synapses and dendrites loss provides a starting point for fault-resistant neuromorphic chip development.


2012 ◽  
Vol 13 (1) ◽  
pp. 12 ◽  
Author(s):  
H. EL LAKHRACH ◽  
A. HATTOUR ◽  
O. JARBOUI ◽  
K. ELHASNI ◽  
A.A. RAMOS-ESPLA

The aim of this paper is to bring to light the knowledge of marine diversity of invertebrates in Gabes gulf. The spatial distribution of the megabenthic fauna community in Gabes gulf (Tunisia, Eastern Mediterranean Sea), together with the bottom type and vegetation cover, were studied. The abundance of the megabenthic fauna was represented by eight groups: Echinodermata (38%), Crustacea (21%), Tunicata (19%), Mollusca (13%), Porifera (4%), Cnidaria (3%), Bryozoa, and Annelida (2%). It was spatially more concentrated in the coast area of the gulf than in the offshore waters. This area, especially, in Southern Kerkennah, North-est of Gabes and North-east of Djerba appeared to be in a good ecological condition  hosting a variety of species like the paguridsPaguristes eremita and Pagurus cuanensis, the brachyura Medorippe lanata, Inachus doresttensis, the Gastropoda Hexaplex trunculus, Bolinus brandaris, Aporrhais pespelecani, andErosaria turdus, the Bivalvia Fulvia fragilis, the Echinoidea Psammechinus microtuberculatus, Holothuria polii,Ophiothrix fragilis and Antedon mediterranea, and the AscidiaceaAplidium cf. conicum, Didemnum spp, and Microcosmus exasperatus.The species’ compositions of the megabentic fauna community showed clearly that the spatial analysis represented the differences between the community of these two regions (inshore waters and offshore waters). These differences were closely related to peculiar characters of the fauna and biotopes (depth, bottom type and vegetation cover community). The results of the present study should be considered as a necessary starting point for a further analysis of priceless benthic fauna contribution to the marine environment and its organisms.


2000 ◽  
Vol 84 (4) ◽  
pp. 2048-2062 ◽  
Author(s):  
Mitesh K. Kapadia ◽  
Gerald Westheimer ◽  
Charles D. Gilbert

To examine the role of primary visual cortex in visuospatial integration, we studied the spatial arrangement of contextual interactions in the response properties of neurons in primary visual cortex of alert monkeys and in human perception. We found a spatial segregation of opposing contextual interactions. At the level of cortical neurons, excitatory interactions were located along the ends of receptive fields, while inhibitory interactions were strongest along the orthogonal axis. Parallel psychophysical studies in human observers showed opposing contextual interactions surrounding a target line with a similar spatial distribution. The results suggest that V1 neurons can participate in multiple perceptual processes via spatially segregated and functionally distinct components of their receptive fields.


2017 ◽  
Vol 12 (S333) ◽  
pp. 238-241 ◽  
Author(s):  
René Laureijs

AbstractEuclid enables the exploration of large sky areas with diffraction limited resolution in the optical and near-infrared, and is sensitive enough to detect targets at cosmological distances. This combination of capabilities gives Euclid a clear advantage over telescope facilities with larger apertures, both on ground and in space. The decision to mount in the NISP instrument one extra grism for the wavelength range 0.92-1.3 μm with a spectral resolution of R ≈260 makes possible a rest-frame UV survey of the early Universe in the redshift range 6.5 < z < 9.7. Euclid’s standard imaging with VIS in the 0.55-0.9 μm band and with NISP in the Y, J, H bands provide complementary photometry for further target identification and characterization. Euclid is a suitable facility to discover and map the spatial distribution of rare high-redshift targets and to collect statistically relevant samples, in particular of high redshift Lyα emitters and QSOs, which can be used as signposts of the cosmic structures. The Euclid surveys are also a starting point for deeper follow up observations of the individual high-z objects. We present the Euclid mission and discuss the detectability of high-z objects to probe the epoch of ionization.


Cell Reports ◽  
2017 ◽  
Vol 21 (6) ◽  
pp. 1550-1561 ◽  
Author(s):  
Michael Doron ◽  
Giuseppe Chindemi ◽  
Eilif Muller ◽  
Henry Markram ◽  
Idan Segev

2012 ◽  
Vol 2012 ◽  
pp. 1-10 ◽  
Author(s):  
Ricardo J. P. S. Guimarães ◽  
Corina C. Freitas ◽  
Luciano V. Dutra ◽  
Carlos A. Felgueiras ◽  
Sandra C. Drummond ◽  
...  

Geographic Information Systems (GISs) are composed of useful tools to map and to model the spatial distribution of events that have geographic importance as schistosomiasis. This paper is a review of the use the indicator kriging, implemented on the Georeferenced Information Processing System (SPRING) to make inferences about the prevalence of schistosomiasis and the presence of the species ofBiomphalaria, intermediate hosts ofSchistosoma mansoni, in areas without this information, in the Minas Gerais State, Brazil. The results were two maps. The first one was a map ofBiomphalariaspecies, and the second was a new map of estimated prevalence of schistosomiasis. The obtained results showed that the indicator kriging can be used to better allocate resources for study and control of schistosomiasis in areas with transmission or the possibility of disease transmission.


2011 ◽  
Vol 75 (3) ◽  
pp. 245-251 ◽  
Author(s):  
Elżbieta Cieślak ◽  
Wojciech Paul ◽  
Michał Ronikier

An extremely endangered population of <em>Viola uliginosa</em> Besser at the classical locality of this taxon has been studied. The AFLP analysis was based on 18 specimens of <em>V. uliginosa</em> (about 10% of preserved individuals); additionally, two individuals of <em>V. riviniana</em> were included in the data set as the out group. A high genetical uniformity of the whole population (similarity indexes close to 1) was detected. It was not correlated significantly with the spatial distribution of the plants. The study serves as a basis for practical conservation measures and at the same time as a starting point for a more extensive research on the genetical variability of the species throughout its range.


10.14311/776 ◽  
2005 ◽  
Vol 45 (6) ◽  
Author(s):  
V. Tesař

Helicity offers an alternative approach to investigations of the structure of turbulent flows. Knowledge of the spatial distribution of the time-mean component of helicity is the starting point. Yet very little is known even about basic cases in which Helicity plays important role, such as the case of a swirling jet. This is the subject of the present investigations, based mainly on numerical flowfield computations. The region of significantly large time-mean helicity density is found only in a rather small region reaching to several nozzle diameters downstream from the exit. The most important result is the similarity of the helicity density profiles. 


Neofilolog ◽  
2012 ◽  
pp. 81-93
Author(s):  
Agnieszka Kubiczek

In the article I am presenting the course of the process of learning vocabulary activated while teaching a foreign language. The paper takes the models of information processing and input processing as a starting point to describe the phases of vocabulary learning and to implicate the teaching procedures based on the insights in the natural processes of language acquisition. It provides theoretical background referring to the concept of instructed learning understood as the possibility of steering learners’ perception and processing of lexical structures by the teacher, and also examples on how to use this knowledge in the classroom.


Sign in / Sign up

Export Citation Format

Share Document