Effect of habitat drying on the development of the Eastern spadefoot toad (Pelobates syriacus) tadpoles

2010 ◽  
Vol 31 (3) ◽  
pp. 425-434 ◽  
Author(s):  
Paul Székely ◽  
Dan Cogălniceanu ◽  
Marian Tudor

AbstractAmphibians exhibit plasticity in the timing of metamorphosis, and tadpoles of many species respond to pond drying by accelerating their development. In the present study we investigated the phenotypic plasticity of the developmental response to water volume reduction in tadpoles of Eastern spadefoot toad Pelobates syriacus. The response of tadpoles to the simulated drying conditions was evaluated by gradually reducing the water level in the experimental containers under controlled laboratory conditions. Four water level treatments were used: constant high, slow decrease, fast decrease and constant low level. We tested if (i) tadpoles can speed up their development in a drying aquatic habitat, and (ii) if the accelerated development causes a reduced body size at metamorphosis. Our results showed that P. syriacus tadpoles were able to respond to pond drying by speeding up their metamorphosis and that metamorphosis was not influenced by water level, but by water level decrease rate. The accelerated development caused by the decreasing water level resulted in smaller body size at metamorphosis. The smallest size at metamorphosis was in tadpoles raised in constant low water level treatments and was probably induced by the crowding effect. We compared our results to similar studies which show that the response of the Eastern spadefoot toad tadpoles to pond drying is less impressive, especially if compared to the response of the North American spadefoot toads inhabiting desert environments.

Biologia ◽  
2014 ◽  
Vol 69 (10) ◽  
Author(s):  
Arturo Kehr ◽  
Valeria Gómez

AbstractAmphibians exhibit extreme plasticity in the timing of metamorphosis, and several species respond to water availability, accelerating metamorphosis when their ponds dry. We analyzed the plasticity of the developmental response to water volume in Rhinella schneideri tadpoles. We raised tadpoles in mesocosm. Covariation between body size at metamorphosis and timing of development was positive. Nevertheless, the first approximately 53% of the metamorphoses finishing the cycle required between 34 and 56 days, and the covariation between body size at metamorphosis and timing of development was negative. For these tadpoles, the larval density and the presence of predators did not significantly affect their mass to metamorphosis. Nevertheless, predators affected time to metamorphosis. For the remainder of the tadpoles that reached metamorphosis at > 56 days, the relationship between body size at metamorphosis and timing of development was positive. For these tadpoles, larval density was important for mass at metamorphosis and presence of predators was also important for time to metamorphosis. Two dominant features were observed: (i) approximately 53% of metamorphs had morphological features similar to individuals developing in desiccating ponds, and (ii) the other individuals had morphological characteristics comparable to metamorphs developing in an unchanging environment.


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Lee Hyeun-Ji ◽  
Miguel Ángel Rendón ◽  
Hans Christoph Liedtke ◽  
Ivan Gomez-Mestre

AbstractAmphibian larvae are plastic organisms that can adjust their growth and developmental rates to local environmental conditions. The consequences of such developmental alterations have been studied in detail, both at the phenotypic and physiological levels. While largely unknown, it is of great importance to assess how developmental alterations affect the pigmentation pattern of the resulting metamorphs, because pigmentation is relevant for communication, mate choice, and camouflage and hence influences the overall fitness of the toads. Here we quantify the variation in several aspects of the pigmentation pattern of juvenile spadefoot toads experimentally induced to accelerate their larval development in response to decreased water level. It is known that induced developmental acceleration comes at the cost of reduced size at metamorphosis, higher metabolic rate, and increased oxidative stress. In this study, we show that spadefoot toads undergoing developmental acceleration metamorphosed with a less complex, more homogeneous, darker dorsal pattern consisting of continuous blotches, compared to the more contrasted pattern with segregated blotches and higher fractal dimension in normally developing individuals, and at a smaller size. We also observed a marked effect of population of origin in the complexity of the pigmentation pattern. Complexity of the post-metamorphic dorsal pigmentation could therefore be linked to pre-metamorphic larval growth and development.


Hydrobiologia ◽  
2021 ◽  
Vol 848 (5) ◽  
pp. 1015-1025
Author(s):  
C. Patel ◽  
A. N. Vadher ◽  
K. L. Mathers ◽  
C. Dwyer ◽  
P. J. Wood

AbstractThis study aimed to experimentally examine how riverbed drying and different rates of water level reduction influenced the vertical movement of amphipods of various sizes into different subsurface sediment compositions. Using sediment columns (mesocosms) filled with different sized transparent substrates, we explored how varying speeds of drawdown affected vertical movement and stranding of individuals. We hypothesised that: (1) larger individuals would be less able to migrate within subsurface sediments compared to smaller ones; (2) smaller sediment particles would lead to more individuals becoming stranded and; (3) faster rates of water level drawdown would increase the likelihood of individuals becoming stranded above the waterline. Body size significantly influenced the final position of an individual, with smaller individuals accessing deeper sediments more readily. Larger amphipods were more likely to become stranded above the waterline. Amphipods migrated to greater depths during faster water level reduction rates with smaller individuals displaying greater overall movement. Sediment particle size did not influence the ability of amphipods to move vertically into subsurface sediments in response to water level reduction. The results indicate that subsurface sediments may serve as a refuge from surface drying but that both the size of individual invertebrates influences their ability to migrate vertically.


HortScience ◽  
1998 ◽  
Vol 33 (3) ◽  
pp. 553d-553
Author(s):  
C.R. Unrath

Historically, most airblast chemical applications to apple orchards used a single “average” water volume, resulting in variability of coverage with tree size and also the greatest variable in chemical thinning. This coverage variability can be eliminated by properly quantifying the tree canopy, as tree row volume (TRV), and relating that volume to airblast water rate for adequate coverge. Maximum typical tree height, cross-row limb spread, and between-row spacing are used to quantify the TRV. Further refinement is achieved by adjusting the water volume for tree canopy density. The North Carolina TRV model allows a density adjustment from 0.7 gal/1000 ft3 of TRV for young, very open tree canopies to 1.0 gal/1000 ft3 of TRV for large, thick tree canopies to deliver a full dilute application for maximum water application (to the point of run-off). Most dilute pesticide applications use 70% of full dilute to approach the point of drip (pesticide dilute) to not waste chemicals and reduce non-target environmental exposure. From the “chemical load” (i.e., lb/acre) calculated for the pesticide dilute application, the proper chemical load for lower (concentrate) water volumes can be accurately determined. Another significant source of variability is thinner application response is spray distribution to various areas of the tree. This variability is related to tree configuration, light, levels, fruit set, and natural thinning vs. the need for chemical thinning. Required water delivery patterns are a function of tree size, form, spacing, and density, as well as sprayer design (no. of nozzles and fan size). The TRV model, density adjustments, and nozzle patterns to effectively hit the target for uniform crop load will be addressed.


The Holocene ◽  
2020 ◽  
pp. 095968362098168
Author(s):  
Christian Stolz ◽  
Magdalena Suchora ◽  
Irena A Pidek ◽  
Alexander Fülling

The specific aim of the study was to investigate how four adjacent geomorphological systems – a lake, a dune field, a small alluvial fan and a slope system – responded to the same impacts. Lake Tresssee is a shallow lake in the North of Germany (Schleswig-Holstein). During the Holocene, the lake’s water surface declined drastically, predominately as a consequence of human impact. The adjacent inland dune field shows several traces of former sand drift events. Using 30 new radiocarbon ages and the results of 16 OSL samples, this study aims to create a new timeline tracing the interaction between lake and dunes, as well, as how both the lake and the dunes reacted to environmental changes. The water level of the lake is presumed to have peaked during the period before the Younger Dryas (YD; start at 10.73 ka BC). After the Boreal period (OSL age 8050 ± 690 BC) the level must have undergone fluctuations triggered by climatic events and the first human influences. The last demonstrable high water level was during the Late Bronze Age (1003–844 cal. BC). The first to the 9th century AD saw slightly shrinking water levels, and more significant ones thereafter. In the 19th century, the lake area was artificially reduced to a minimum by the human population. In the dunes, a total of seven different phases of sand drift were demonstrated for the last 13,000 years. It is one of the most precisely dated inland-dune chronologies of Central Europe. The small alluvial fan took shape mainly between the 13th and 17th centuries AD. After 1700 cal. BC (Middle Bronze Age), and again during the sixth and seventh centuries AD, we find enhanced slope activity with the formation of Holocene colluvia.


2021 ◽  
Author(s):  
Musab Mbideen ◽  
Balázs Székely

<p>Remote Sensing (RS) and Geographic Information System (GIS) instruments have spread rapidly in recent years to manage natural resources and monitor environmental changes. Remote sensing has a vast range of applications; one of them is lakes monitoring. The Dead Sea (DS) is subjected to very strong evaporation processes, leading to a remarkable shrinkage of its water level. The DS is being dried out due to a negative balance in its hydrological cycle during the last five decades. This research aims to study the spatial changes in the DS throughout the previous 48 years. Change detection technique has been performed to detect this change over the research period (1972-2020). 73 Landsat imageries have been used from four digital sensors; Landsat 1-5 MSS C1 Level-1, Landsat 4-5 TM C1 Level-1, Land sat 7 ETM+ C1  Level-1, and Landsat 8 OLI-TIRS C1 Level. After following certain selection criteria , the number of studied images decreased. Furthermore, the Digital Surface Model of the Space Shuttle Radar Topography Mission and a bathymetric map of the Dead Sea were used. The collected satellite imageries were pre-processed and normalized using ENVI 5.3 software by converting the Digital Number (DN) to spectral radiance, the spectral radiance was converted to apparent reflectance, atmospheric effects were removed, and finally, the black gaps were removed. It was important to distinguish between the DS lake and the surrounding area in order to have accurate results, this was done by performing classification techniques. The digital terrain model of the DS was used in ArcGIS (3D) to reconstruct the elevation of the shore lines. This model generated equations to detect the water level, surface area, and water volume of the DS. The results were compared to the bathymetric data as well. The research shows that the DS water level declined 65 m (1.35 m/a) in the studied period. The surface area and the water volume declined by 363.56 km<sup>2 </sup>(7.57 km<sup>2</sup>/a) and 53.56 km<sup>3</sup> (1.11 km<sup>3</sup>/a), respectively. The research also concluded that due to the bathymetry of the DS, the direction of this shrinkage is from the south to the north. We hypothesize that anthropogenic effects have contributed in the shrinkage of the DS more than the climate. The use of the DS water by both Israel and Jordan for industrial purposes is the main factor impacting the DS, another factor is the diversion of the Jordan and Yarmouk rivers. Our results also allow to give a prediction for the near future of the DS: the water level is expected to reach –445 m in 2050, while the surface area and the water volume is expected to be 455 km<sup>2</sup> and 142 km<sup>3</sup>, respectively. </p>


2016 ◽  
Vol 14 (3) ◽  
Author(s):  
Santiago A. Barbini ◽  
Luis O. Lucifora

ABSTRACT The eyespot skate, Atlantoraja cyclophora, is an endemic species from the southwestern Atlantic, occurring from Rio de Janeiro, Brazil, to northern Patagonia, Argentina. The feeding habits of this species, from off Uruguay and north Argentina, were evaluated using a multiple hypothesis modelling approach. In general, the diet was composed mainly of decapod crustaceans, followed by teleost fishes. Molluscs, mysidaceans, amphipods, isopods, lancelets and elasmobranchs were consumed in lower proportion. The consumption of shrimps drecreased with increasing body size of A. cyclophora. On the other hand, the consumption of teleosts increased with body size. Mature individuals preyed more heavily on crabs than immature individuals. Teleosts were consumed more in the south region (34º - 38ºS) and crabs in the north region (38º - 41ºS). Shrimps were eaten more in the warm season than in the cold season. Prey size increased with increasing body size of A. cyclophora , but large individuals also consumed small teleosts and crabs. Atlantoraja cyclophora has demersal-benthic feeding habits, shifts its diet with increasing body size and in response to seasonal and regional changes in prey availability and distribution.


Sign in / Sign up

Export Citation Format

Share Document