New Findings on the Sensitivity of Free-Operant Timing Behaviour to 5-Hydroxytryptamine Receptor Stimulation

2014 ◽  
Vol 2 (2) ◽  
pp. 210-232 ◽  
Author(s):  
S. Body ◽  
T. H. C. Cheung ◽  
G. Bezzina ◽  
C. L. Hampson ◽  
K. C. F. Fone ◽  
...  

Timing performance maintained under the free-operant psychophysical procedure (FOPP) is sensitive to 5-hydroxytryptamine (5-HT)1A and 5-HT2A receptor stimulation. Agonists of these receptors displace the psychometric function towards shorter durations, reducing , the index of central tendency of timing. Here we report the effects of Ro-600175, a selective 5-HT2C receptor agonist, and mCPP, a 5-HT receptor agonist with high affinity for 5-HT2C receptors and lower affinity for 5-HT1A, 5-HT1B and 5-HT2A receptors, on timing behaviour. Rats were trained under the FOPP to press two levers (A and B) in 50-s trials in which reinforcers were provided intermittently for responding on A in the first half, and B in the second half of the trial. Percent responding on B (%B) was recorded in successive 5-s epochs of the trials; logistic psychometric curves were fitted to the data from each rat under each treatment condition for derivation of timing indices [ (time corresponding to %B = 50%), Weber fraction]. The rats received systemic treatment with Ro-600175, mCPP, and mCPP in combination with antagonists of 5-HT1A (WAY-100635), 5-HT1B (isamoltane), 5-HT2A (MDL-100907) or 5-HT2C (SB-242084) receptors. mCPP (2.5 mg kg−1 i.p.), but not Ro-600175 (1, 2, 4 mg kg−1 i.p.), reduced . SB-242084 (0.6 mg kg−1 i.p.) potentiated mCPP’s effect on . mCPP’s effect on was not altered by isamoltane (8.0 mg kg−1 i.p.), but was attenuated by MDL-100907 (1.0 mg kg−1 i.p.) and WAY-100635 (0.1 mg kg−1 s.c.). The results suggest that mCPP’s effect on timing is mediated by an agonistic action at 5-HT1A and 5-HT2A, but not 5-HT1B, receptors. The role of 5-HT2C receptors is unclear, in view of SB-242084’s ability to potentiate the effect of mCPP, while Ro-600175 had no effect on . The possibility is considered that 5-HT2C receptors may counteract 5-HT1A and/or 5-HT2A receptor-mediated effects on timing performance.

2021 ◽  
Author(s):  
◽  
Dane Aronsen

<p>Rationale: 3,4-methylenedioxymethamphetamine (MDMA) is a less efficacious reinforcer than other drugs of abuse. However, following repeated self-administration, responding increases for some animals and efficacy becomes comparable to other drugs of abuse. MDMA-stimulated serotonin (5-HT) release was negatively associated with acquisition of MDMA self-administration, and a neurotoxic 5-HT lesion reduced the latency to acquire self-administration. These findings suggest that MDMA-produced 5-HT release is an important component of self-administration. The receptor mechanisms are not, however, well understood, although it has often been suggested that the mechanism involves 5-HT-mediated inhibition of dopamine. Both 5-HT1A and 5-HT1B receptors are well localised to regulate dopamine release, and both have been implicated in modulating the reinforcing effects of many drugs of abuse.   Objectives: The first objective was to establish specific behavioural assays to reflect 5-HT1A and 5-HT1B receptor activation. Then, using the established behavioural assays, the aim was to determine the role of 5-HT1A and 5-HT1B receptors in the acquisition of MDMA self-administration. The impact of substantial MDMA self-administration on 5-HT1A and 5-HT1B receptors was also assessed.  Methods: Firstly, dose-effect relationships for the hyperactive response to the 5-HT1A receptor agonist, 8-OH-DPAT (0 – 3.0 mg/kg) and the hyperactive and adipsic response to the 5-HT1B/1A receptor agonist, RU 24969 (0 – 3.0 mg/kg) were determined. Selectivity of these responses was determined by co-administration of the 5-HT1A receptor antagonist, WAY 100635, or the 5-HT1B/1D receptor antagonist, GR 127935. Secondly, a pretreatment regimen of the RU 24969 (2 × 3.0 mg/kg/day, 3 days), which had been suggested to down-regulate 5-HT1B/1A receptors, was administered prior to self-administration testing. The effect of this manipulation on both the acquisition of MDMA self-administration, and the behavioural responses to 5-HT1A and 5-HT1B receptor activation, was measured. A further study measured behavioural responses to 5-HT1A or 5-HT1B receptor agonists prior to self-administration, to determine whether the variability in these responses would predict the variability in the latency to acquisition of MDMA self-administration. Lastly, the effect of substantial MDMA self-administration (350 mg/kg) on dose-response curves for the behavioural effects of 5-HT1A or 5-HT1B receptor activation was assessed.   Results: The hyperactive response to the 5-HT1B/1A receptor agonist, RU 24969, was blocked by the 5-HT1A receptor antagonist, WAY 100635, but not the 5-HT1B receptor antagonist, GR127935. Similarly, the hyperactive response to the 5-HT1A receptor agonist, 8-OH-DPAT, was dose-dependently blocked by WAY 100635. GR 127935, but not WAY 100635, blocked the adipsic response to RU 24969. Repeated administration of RU 24969 produced rightward shifts in the dose-response curves for 8-OH-DPAT-produced hyperactivity and RU 24969-produced adipsia, and also greatly facilitated the acquisition of MDMA self-administration. However, there was no correlation between latency to acquire MDMA self-administration and the hyperactive response to 8-OH-DPAT or the adipsic response to RU 24969, and MDMA self-administration failed to alter these behavioural response to activation of 5-HT1A or 5-HT1B receptors.   Conclusions: The hyperactive response to 8-OH-DPAT and the adipsic response to RU 24969 reflect activation of 5-HT1A and 5-HT1B receptors, respectively. The variability in acquisition of MDMA self-administration was reduced by a treatment that also down-regulated 5-HT1A and 5-HT1B receptors, however there was no further indication that these receptors play a critical role in the self-administration of MDMA. Instead, it seems likely that other 5-HT receptors have a greater impact on MDMA self-administration.</p>


2021 ◽  
Author(s):  
◽  
Dane Aronsen

<p>Rationale: 3,4-methylenedioxymethamphetamine (MDMA) is a less efficacious reinforcer than other drugs of abuse. However, following repeated self-administration, responding increases for some animals and efficacy becomes comparable to other drugs of abuse. MDMA-stimulated serotonin (5-HT) release was negatively associated with acquisition of MDMA self-administration, and a neurotoxic 5-HT lesion reduced the latency to acquire self-administration. These findings suggest that MDMA-produced 5-HT release is an important component of self-administration. The receptor mechanisms are not, however, well understood, although it has often been suggested that the mechanism involves 5-HT-mediated inhibition of dopamine. Both 5-HT1A and 5-HT1B receptors are well localised to regulate dopamine release, and both have been implicated in modulating the reinforcing effects of many drugs of abuse.   Objectives: The first objective was to establish specific behavioural assays to reflect 5-HT1A and 5-HT1B receptor activation. Then, using the established behavioural assays, the aim was to determine the role of 5-HT1A and 5-HT1B receptors in the acquisition of MDMA self-administration. The impact of substantial MDMA self-administration on 5-HT1A and 5-HT1B receptors was also assessed.  Methods: Firstly, dose-effect relationships for the hyperactive response to the 5-HT1A receptor agonist, 8-OH-DPAT (0 – 3.0 mg/kg) and the hyperactive and adipsic response to the 5-HT1B/1A receptor agonist, RU 24969 (0 – 3.0 mg/kg) were determined. Selectivity of these responses was determined by co-administration of the 5-HT1A receptor antagonist, WAY 100635, or the 5-HT1B/1D receptor antagonist, GR 127935. Secondly, a pretreatment regimen of the RU 24969 (2 × 3.0 mg/kg/day, 3 days), which had been suggested to down-regulate 5-HT1B/1A receptors, was administered prior to self-administration testing. The effect of this manipulation on both the acquisition of MDMA self-administration, and the behavioural responses to 5-HT1A and 5-HT1B receptor activation, was measured. A further study measured behavioural responses to 5-HT1A or 5-HT1B receptor agonists prior to self-administration, to determine whether the variability in these responses would predict the variability in the latency to acquisition of MDMA self-administration. Lastly, the effect of substantial MDMA self-administration (350 mg/kg) on dose-response curves for the behavioural effects of 5-HT1A or 5-HT1B receptor activation was assessed.   Results: The hyperactive response to the 5-HT1B/1A receptor agonist, RU 24969, was blocked by the 5-HT1A receptor antagonist, WAY 100635, but not the 5-HT1B receptor antagonist, GR127935. Similarly, the hyperactive response to the 5-HT1A receptor agonist, 8-OH-DPAT, was dose-dependently blocked by WAY 100635. GR 127935, but not WAY 100635, blocked the adipsic response to RU 24969. Repeated administration of RU 24969 produced rightward shifts in the dose-response curves for 8-OH-DPAT-produced hyperactivity and RU 24969-produced adipsia, and also greatly facilitated the acquisition of MDMA self-administration. However, there was no correlation between latency to acquire MDMA self-administration and the hyperactive response to 8-OH-DPAT or the adipsic response to RU 24969, and MDMA self-administration failed to alter these behavioural response to activation of 5-HT1A or 5-HT1B receptors.   Conclusions: The hyperactive response to 8-OH-DPAT and the adipsic response to RU 24969 reflect activation of 5-HT1A and 5-HT1B receptors, respectively. The variability in acquisition of MDMA self-administration was reduced by a treatment that also down-regulated 5-HT1A and 5-HT1B receptors, however there was no further indication that these receptors play a critical role in the self-administration of MDMA. Instead, it seems likely that other 5-HT receptors have a greater impact on MDMA self-administration.</p>


2006 ◽  
Vol 185 (3) ◽  
pp. 378-388 ◽  
Author(s):  
T. H. C. Cheung ◽  
G. Bezzina ◽  
K. Asgari ◽  
S. Body ◽  
K. C. F. Fone ◽  
...  

2008 ◽  
Vol 294 (5) ◽  
pp. R1435-R1444 ◽  
Author(s):  
Hakan S. Orer ◽  
Gerard L. Gebber ◽  
Susan M. Barman

We studied the changes in inferior cardiac sympathetic nerve discharge (SND) produced by unilateral microinjections of 5-hydroxytryptamine (5-HT) receptor agonists and antagonists into the ventrolateral medulla (VLM) of urethane-anesthetized, baroreceptor-denervated cats. Microinjection of the 5-HT2 receptor antagonist LY-53857 (10 mM) into either the rostral or caudal VLM significantly reduced ( P ≤ 0.05) the 10-Hz rhythmic component of basal SND without affecting its lower-frequency, aperiodic component. The selective depression of 10-Hz power was accompanied by a statistically significant decrease in mean arterial pressure (MAP). Microinjection of LY-53857 into the VLM also attenuated the increase in 10-Hz power that followed tetanic stimulation of depressor sites in the caudal medullary raphé nuclei. Microinjection of the 5-HT2 receptor agonist 1-(2,5-dimethoxy-4-iodophenyl)2-amino-propane (DOI; 10 μM) into the VLM selectively enhanced 10-Hz SND, and intravenous DOI (1 mg/kg) partially reversed the reduction in 10-Hz SND produced by 5-HT2 receptor blockade in the VLM. Microinjection of the 5-HT1A receptor agonist, 8-hydroxy-2-(di- n-propylamino)tetralin (8-OHDPAT; 10 mM), into either the rostral or caudal VLM also selectively attenuated 10-Hz SND and significantly reduced MAP. The reduction in 10-Hz SND produced by 8-OHDPAT was partially reversed by intravenous WAY-100635 (1 mg/kg), which selectively blocks 5-HT1A receptors. These results support the view that serotonergic inputs to the VLM play an important role in expression of the 10-Hz rhythm in SND.


1995 ◽  
Vol 133 (6) ◽  
pp. 723-728 ◽  
Author(s):  
Ettore C degli Uberti ◽  
Maria R Ambrosio ◽  
Marta Bondanelli ◽  
Giorgio Transforini ◽  
Alberto Valentini ◽  
...  

degli Uberti EC, Ambrosio MR, Bondanelli M, Trasforini G, Valentini A, Rossi R, Margutti A, Campo M. Effect of human galanin on the response of circulating catecholamines to hypoglycemia in man. Eur J Endocrinol 1995;133:723–8. ISSN 0804–4643 Human galanin (hGAL) is a neuropeptide with 30 amino acid residues that has been found in the peripheral and central nervous system, where it often co-exists with catecholamines. In order to clarify the possible role of hGAL in the regulation of sympathoadrenomedullary function, the effect of a 60 min infusion of hGAL (80 pmol·kg−1 · min−1) on plasma epinephrine and norepinephrine responses to insulin-induced hypoglycemia in nine healthy subjects was investigated. Human GAL administration significantly reduced both the release of basal norepinephrine and the response to insulin-induced hypoglycemia, whereas it attenuated the epinephrine response by 26%, with the hGAL-induced decrease in epinephrine release failing to achieve statistical significance. Human GAL significantly increased the heart rate in resting conditions and clearly exaggerated the heart rate response to insulin-induced hypoglycemia, whereas it had no effect on the blood pressure. We conclude that GAL receptor stimulation exerts an inhibitory effect on basal and insulin-induced hypoglycemia-stimulated release of norepinephrine. These findings provide further evidence that GAL may modulate sympathetic nerve activity in man but that it does not play an important role in the regulation of adrenal medullary function. Ettore C degli Uberti, Chair of Endocrinology, University of Ferrara, Via Savonarola 9, I-44100 Ferrara, Italy


Author(s):  
Cecilia Valencia ◽  
Felipe Alonso Pérez ◽  
Carola Matus ◽  
Ricardo Felmer ◽  
María Elena Arias

Abstract The present study evaluated the mechanism by which protein synthesis inhibitors activate bovine oocytes. The aim was to analyze the dynamics of MPF and MAPKs. MII oocytes were activated with ionomycin (Io), ionomycin+anisomycin (ANY) and ionomycin+cycloheximide (CHX) and by in vitro fertilization (IVF). The expression of cyclin B1, p-CDK1, p-ERK1/2, p-JNK, and p-P38 were evaluated by immunodetection and the kinase activity of ERK1/2 was measured by enzyme assay. Evaluations at 1, 4, and 15 hours postactivation (hpa) showed that the expression of cyclin B1 was not modified by the treatments. ANY inactivated MPF by p-CDK1Thr14-Tyr15 at 4 hpa (P &lt; 0.05), CHX increased pre-MPF (p-CDK1Thr161 and p-CDK1Thr14-Tyr15) at 1 hpa and IVF increased p-CDK1Thr14-Tyr15 at 17 hours postfertilization (hpf) (P &lt; 0.05). ANY and CHX reduced the levels of p-ERK1/2 at 4 hpa (P &lt; 0.05) and its activity at 4 and 1 hpa, respectively (P &lt; 0.05). Meanwhile, IVF increased p-ERK1/2 at 6 hpf (P &lt; 0.05); however, its kinase activity decreased at 6 hpf (P &lt; 0.05). p-JNK in ANY, CHX, and IVF oocytes decreased at 4 hpa (P &lt; 0.05). p-P38 was only observed at 1 hpa, with no differences between treatments. In conclusion, activation of bovine oocytes by ANY, CHX, and IVF inactivates MPF by CDK1-dependent specific phosphorylation without cyclin B1 degradation. ANY or CHX promoted this inactivation, which seemed to be more delayed in the physiological activation (IVF). Both inhibitors modulated MPF activity via an ERK1/2-independent pathway, whereas IVF activated the bovine oocytes via an ERK1/2-dependent pathway. Finally, ANY does not activate the JNK and P38 kinase pathways.


2020 ◽  
Vol 2 (1) ◽  
Author(s):  
Anthony D. Covington ◽  
William R. Wise

Abstract In preparing the second edition of ‘Tanning Chemistry. The Science of Leather.’, the literature was updated and the content was revised and reviewed. Here, the new findings are presented and discussed. Notable developments include the necessary rethinking of the mechanism of sulfide unhairing because of new understanding of the aqueous chemistry of sulfide species. Revision upwards of the value of the second pKa for sulfide species ionisation means that S2− cannot exist in an aqueous medium, so the unhairing species in hair burn reactions is HS−. Although the technology remains the same, this means the mechanisms of associated reactions such as immunisation must be revised. Rawstock preservation has benefitted from studies of the potential role of materials from plants which accumulate salt, but which also contribute terpene compounds. There is also further discussion on the continuing issue of chromium (VI) in the leather industry. The application to processing of new solvents, ionic liquids and deep eutectics, is the coming technology, which offers transforming options for new chemistries and products. Renewed interest in vegetable tanning and methods of wet white processing are current trends. Also, within the topic of reagent delivery is processing in a solid medium of plastic beads. Graphical abstract


2021 ◽  
Vol 2 (2) ◽  
pp. 311-338
Author(s):  
Giulia Della Rosa ◽  
Clarissa Ruggeri ◽  
Alessandra Aloisi

Exosomes (EXOs) are nano-sized informative shuttles acting as endogenous mediators of cell-to-cell communication. Their innate ability to target specific cells and deliver functional cargo is recently claimed as a promising theranostic strategy. The glycan profile, actively involved in the EXO biogenesis, release, sorting and function, is highly cell type-specific and frequently altered in pathological conditions. Therefore, the modulation of EXO glyco-composition has recently been considered an attractive tool in the design of novel therapeutics. In addition to the available approaches involving conventional glyco-engineering, soft technology is becoming more and more attractive for better exploiting EXO glycan tasks and optimizing EXO delivery platforms. This review, first, explores the main functions of EXO glycans and associates the potential implications of the reported new findings across the nanomedicine applications. The state-of-the-art of the last decade concerning the role of natural polysaccharides—as targeting molecules and in 3D soft structure manufacture matrices—is then analysed and highlighted, as an advancing EXO biofunction toolkit. The promising results, integrating the biopolymers area to the EXO-based bio-nanofabrication and bio-nanotechnology field, lay the foundation for further investigation and offer a new perspective in drug delivery and personalized medicine progress.


1992 ◽  
Vol 20 (2) ◽  
pp. 246-250
Author(s):  
Lars Rönnbäck ◽  
Elisabeth Hansson

Cell volume was determined by measuring [14C]-3- O-methyl glucose uptake in astroglial-enriched primary cultures. Control cell volume was 3.20μl/mg protein. After incubation in 10 5M HgCl2 for 60 minutes, there was a 71% increase in cell volume. This increase was partially inhibited in the presence of the α1 receptor agonist, phenylephrine, or by the α2 receptor agonist clonidine, and was completely reversible by their respective antagonists, prazosine and yohimbine. The β receptor agonist, isoproterenol, which in itself increased cell volume, and 5-hydroxytryptamine (5HT) did not affect the HgCl2-induced changes in cell volume. 10 5M CH3HgCl increased cell volume by 26% after 30 minutes of incubation. This increase was not significantly influenced by adrenoceptor agonists or 5HT. It therefore seems that mercurial-induced changes in cell volume can be regulated by astroglial receptor stimulation.


Sign in / Sign up

Export Citation Format

Share Document