HORSEMEN IN FORTS OR PEASANTS IN VILLAGES? REMARKS ON THE ARCHAEOLOGY OF WARFARE IN THE 6TH TO 7TH C. BALKANS

2013 ◽  
Vol 8 (2) ◽  
pp. 809-850
Author(s):  
Florin Curta

Conspicuously absent from 6th to early 7th c. fortified sites in the Balkans are stirrups and other elements of equipment signalling the presence of cavalry troops. Hoards of iron implements containing stirrups have been wrongly dated to Late Antiquity; they are in fact of a much later date (9th–11th c. A.D.). Those hoards which can be dated to the 6th c. with some degree of certainty lack agricultural tools associated with large-scale cultivation of fields. As most such hoards found in Early Byzantine hill-forts typically include tools for the garden-type cultivation of small plots of land, they show that no agricultural occupations could be practised inside or outside 6th c. forts, which could satisfy the needs of the existing population. Those were, therefore, forts, not fortified villages.

Author(s):  
P. GUEST

The archaeological excavations carried out on late Roman and early Byzantine sites in the Balkans has revolutionized our knowledge of this part of the world in Late Antiquity. How these sites are dated is obviously important as, without accurate and reliable dating, it is difficult to understand how they fit into the wider historical narrative. This chapter takes the coins excavated at Dichin as its starting point and, by careful analysis, proposes a general dating scheme for the two phases of occupation at the settlement. The lack of coins struck during the years 474–518 is a notable feature of the assemblage from Dichin, a pattern that is repeated at most sites in the region where coins of the emperor Zeno are particularly rare. By looking at both site finds and hoards from the region, however, these explanations need to be revised as they are based on a numismatic mirage rather than archaeological fact.


2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Cong Li ◽  
Qiuyi Shen ◽  
Xiang Cai ◽  
Danni Lai ◽  
Lingshang Wu ◽  
...  

Abstract Background Dendrobium catenatum belongs to the Orchidaceae, and is a precious Chinese herbal medicine. In the past 20 years, D. catenatum industry has developed from an endangered medicinal plant to multi-billion dollar grade industry. The necrotrophic pathogen Sclerotium delphinii has a devastating effection on over 500 plant species, especially resulting in widespread infection and severe yield loss in the process of large-scale cultivation of D. catenatum. It has been widely reported that Jasmonate (JA) is involved in plant immunity to pathogens, but the mechanisms of JA-induced plant resistance to S. delphinii are unclear. Results In the present study, the role of JA in enhancing D. catenatum resistance to S. delphinii was investigated. We identified 2 COI1, 13 JAZ, and 12 MYC proteins in D. catenatum genome. Subsequently, systematic analyses containing phylogenetic relationship, gene structure, protein domain, and motif architecture of core JA pathway proteins were conducted in D. catenatum and the newly characterized homologs from its closely related orchid species Phalaenopsis equestris and Apostasia shenzhenica, along with the well-investigated homologs from Arabidopsis thaliana and Oryza sativa. Public RNA-seq data were investigated to analyze the expression patterns of D. catenatum core JA pathway genes in various tissues and organs. Transcriptome analysis of MeJA and S. delphinii treatment showed exogenous MeJA changed most of the expression of the above genes, and several key members, including DcJAZ1/2/5 and DcMYC2b, are involved in enhancing defense ability to S. delphinii in D. catenatum. Conclusions The findings indicate exogenous MeJA treatment affects the expression level of DcJAZ1/2/5 and DcMYC2b, thereby enhancing D. catenatum resistance to S. delphinii. This research would be helpful for future functional identification of core JA pathway genes involved in breeding for disease resistance in D. catenatum.


Author(s):  
Ümitcan Erbil ◽  
Aral I. Okay ◽  
Aynur Hakyemez

AbstractLate Cenozoic was a period of large-scale extension in the Aegean. The extension is mainly recorded in the metamorphic core complexes with little data from the sedimentary sequences. The exception is the Thrace Basin in the northern Aegean, which has a continuous record of Middle Eocene to Oligocene marine sedimentation. In the Thrace Basin, the Late Oligocene–Early Miocene was characterized by north-northwest (N25°W) shortening leading to the termination of sedimentation and formation of large-scale folds. We studied the stratigraphy and structure of one of these folds, the Korudağ anticline. The Korudağ anticline has formed in the uppermost Eocene–Lower Oligocene siliciclastic turbidites with Early Oligocene (31.6 Ma zircon U–Pb age) acidic tuff beds. The turbidites are underlain by a thin sequence of Upper Eocene pelagic limestone. The Korudağ anticline is an east-northeast (N65°E) trending fault-propagation fold, 9 km wide and 22 km long and with a subhorizontal fold axis. It is asymmetric with shallowly-dipping northern and steeply-dipping southern limbs. Its geometry indicates about 1 km of shortening in a N25°W direction. The folded strata are unconformably overlain by Middle Miocene continental sandstones, which constrain the age of folding. The Korudağ anticline and other large folds in the Thrace Basin predate the inception of the North Anatolian Fault (NAF) by at least 12 myr. The Late Oligocene–Early Miocene (28–17 Ma) shortening in the Thrace Basin and elsewhere in the Balkans forms an interlude between two extensional periods, and is probably linked to changes in the subduction dynamics along the Hellenic trench.


2021 ◽  
Vol 13 (1) ◽  
Author(s):  
Tashi Dorjee Bapu ◽  
Gibji Nimasow

Illicium griffithii Hook.f. & Thomson, a medicinal plant of the family Schisandraceae, is an Endangered species listed by the IUCN.  A decline in population of this plant due to climate change as well as increasing human influences on the natural resources has been a matter of great concern among the researchers.  In order to estimate the existing population of this plant, a field-based study employing linear transect method was conducted in four phases, May–June 2017, May–June 2018, April–May 2019, October–November 2019 covering an area of 700km² (approx.) in West Kameng District of Arunachal Pradesh that lies within the Himalayan biodiversity hotspot.  The study recorded 3,044 live individuals of I. griffithii including 1,372 seedlings, 1,358 saplings, and only 314 mature trees.  Additionally, 126 dead trees were also recorded.  The study confirmed that the plant has a good regeneration rate but with a poor survival rate of saplings.  Besides, large-scale collection of its fruits for trade and anthropogenic disturbances in the study area appears to be the major threat to its existing population.  Therefore, proper training of the local people on large-scale cultivation of this plant together with awareness towards judicious harvesting of fruits from the wild may be the significant approach to conservation. 


Sign in / Sign up

Export Citation Format

Share Document