Diversity-dependent stability under sowing and nutrient addition: evidence from non-weeded artificial grassland

2019 ◽  
Vol 65 (1-2) ◽  
pp. 1-9
Author(s):  
Xin Yin ◽  
Wei Qi ◽  
GuoZhen Du

A growing body of evidence from diversity-manipulation and natural studies suggests that the stability of community productivity increases with biodiversity; however, few studies have researched this relationship in a non-weeded grassland. To clarify this issue, we established an artificial grassland in 2003 using three common species, Elymus nutans, Festuca sinensis and Festuca ovina, which included seven different community structures (three monocultures, three two-species mixtures and one three-species mixture based on sown species) and two nutrient addition treatments (non-nutrient addition and nutrient addition). Data was collected over a three-year period (2011–2013). Our results showed that the sowing species modified realized species richness (i.e. the number of total species we observed in a community) and species evenness, but had negligible influences on community- and population-level stability. Furthermore, all of these variables were reduced by nutrient addition. These dynamics did not alter the positive influence of realized species richness on community stability, but restricted the stable effect of evenness because this effect was only significant under nutrient addition condition. The potential mechanisms underlying these processes were statistical averaging and species asynchrony, rather than overyielding effect. Conversely, population stability decreased with realized species richness in non-nutrient addition treatments. We conclude that biodiversity contributed to community- and population-level stability even in non-weeded experiment. This process resulted from different mechanisms that observed in weeded experiments. Further studies in other ecosystems (e.g. aquatic ecosystem) are needed to find a more general conclusion.

2020 ◽  
Vol 117 (39) ◽  
pp. 24345-24351 ◽  
Author(s):  
Enrique Valencia ◽  
Francesco de Bello ◽  
Thomas Galland ◽  
Peter B. Adler ◽  
Jan Lepš ◽  
...  

The stability of ecological communities is critical for the stable provisioning of ecosystem services, such as food and forage production, carbon sequestration, and soil fertility. Greater biodiversity is expected to enhance stability across years by decreasing synchrony among species, but the drivers of stability in nature remain poorly resolved. Our analysis of time series from 79 datasets across the world showed that stability was associated more strongly with the degree of synchrony among dominant species than with species richness. The relatively weak influence of species richness is consistent with theory predicting that the effect of richness on stability weakens when synchrony is higher than expected under random fluctuations, which was the case in most communities. Land management, nutrient addition, and climate change treatments had relatively weak and varying effects on stability, modifying how species richness, synchrony, and stability interact. Our results demonstrate the prevalence of biotic drivers on ecosystem stability, with the potential for environmental drivers to alter the intricate relationship among richness, synchrony, and stability.


2019 ◽  
Author(s):  
Leana D. Gooriah ◽  
Priya Davidar ◽  
Jonathan M. Chase

AbstractThe Island Species-Area relationship (ISAR) describes how the number of species increases with increasing size of an island (or island-like habitat), and is of fundamental importance in island biogeography and conservation. Here, we use a framework based on individual-based rarefactions to infer whether ISARs result from random sampling, or whether some process are acting beyond sampling (e.g., disproportionate effects and/or habitat heterogeneity). Using data on total and relative abundances of four taxa (birds, butterflies, amphibians and reptiles) across the Andamans and Nicobar archipelago, we examine how different metrics of biodiversity (total species richness, rarefied species richness, and abundance-weighted effective numbers of species emphasizing common species) vary with island area. Total species richness increased for all taxa, as did rarefied species richness for a given sampling effort. This indicates that the ISAR did not result because of random sampling, but that instead, species were disproportionately favored on larger islands. This disproportionate effect was primarily due to changes in the abundance of rarer species, because there was no effect on the abundance-weighted diversity measure for all taxa except butterflies. Furthermore, for the two taxa for which we had plot-level data (lizards and frogs), within-island β -diversity did not increase with island size, suggesting that heterogeneity effects were unlikely to be driving these ISARS. Overall, our results indicate that the ISAR of these taxa is most likely because rarer species are more likely to survive and persist beyond that which would have been expected by random sampling alone, and emphasizes the role of these larger islands in the preservation and conservation of species.


2010 ◽  
Vol 70 (3) ◽  
pp. 551-557 ◽  
Author(s):  
AMA. Medeiros ◽  
JEL. Barbosa ◽  
PR. Medeiros ◽  
RM. Rocha ◽  
LF. Silva

The present study aimed at evaluating differences in rotifer distribution in three estuarine zones in an inverse estuary located in the Semiarid Region of Brazil. Zones were chosen based on their proximity to the ocean and river border as a means of reflecting a horizontal salinity gradient. High freshwater discharge during the rainy season was the major determinant of rotifer composition. On the other hand, due to higher salinity values during the dry season, very low values of species richness and abundance were observed in all zones. Therefore, the study highlights the constraints of salinity and the positive influence of seasonality and river proximity on rotifer species in a semiarid estuarine environment.


2008 ◽  
Vol 59 (10) ◽  
pp. 940 ◽  
Author(s):  
Liesbet Boven ◽  
Bram Vanschoenwinkel ◽  
Els R. De Roeck ◽  
Ann Hulsmans ◽  
Luc Brendonck

Large branchiopods are threatened worldwide by the loss and degradation of their temporary aquatic habitats owing to drainage and intensive agriculture. Sound ecological knowledge of their diversity and distribution is a prerequisite to formulate effective conservation measures. In the present study, large branchiopods were collected from 82 temporary freshwater pools belonging to five habitat types in Kiskunság (Hungary). Dormant propagule bank analysis complemented the field survey. Eleven species were found, with large branchiopods occurring in more than half of the study systems. The high regional species richness and occurrence frequency of large branchiopods make Kiskunság a true ‘hot spot’ of large branchiopod diversity. The local environment was more important than spatial factors (isolation) in explaining the presence of the most common species. Dispersal was most likely not limiting for the large branchiopods in the study area and colonisation success of different species was differentially affected by local conditions, possibly invertebrate predation risk and hydroperiod. Meadow pools and wheel tracks contributed most to regional species richness through the presence of rare and exclusive species. To conserve branchiopod diversity, we stress the importance of high habitat diversity in the landscape and the need to conserve neglected habitats such as wheel tracks.


2008 ◽  
Vol 38 (7) ◽  
pp. 1807-1816 ◽  
Author(s):  
Björn Nordén ◽  
Frank Götmark ◽  
Martin Ryberg ◽  
Heidi Paltto ◽  
Johan Allmér

Partial cutting is increasingly applied in European temperate oak-dominated forests for biofuel harvesting, and to counteract succession in protected stands. Effects on biodiversity of these measures need to be carefully evaluated, and species-rich but neglected taxa such as fungi should be considered. We studied the effects of partial cutting on fungal fruiting bodies on woody debris. In 21 closed canopy forests rich in large oaks in Sweden, on average 25%–30% of the basal area was cut. Fruiting bodies were counted and some were collected in treated and control plots before and after treatment. We found 334 basidiomycete and 47 ascomycete species. Species richness of basidiomycetes declined significantly more in treated plots (on average 26%) than in control plots (on average 13%) between seasons. Species richness of ascomycetes increased by 17% in control plots and decreased by 2% in treated plots. Total species richness was significantly reduced on fine woody debris (1–10 cm in diameter), but not on coarse woody debris (>10 cm). Overall species composition did not change significantly as a result of partial cutting, but red-listed species tended to decrease more in treated plots. We suggest that approximately 30% of the stands should not be thinned, and dead stems and fallen branches should not be removed, to favor saproxylic fungi and their associated fauna.


Mammalia ◽  
2016 ◽  
Vol 80 (1) ◽  
Author(s):  
Mariano S. Sánchez

AbstractI evaluated bat assemblages in terms of species richness, relative abundance, trophic guild structure, and seasonal changes at three sites along of the Southern Yungas forests. A total of 854 individuals were captured, representing 25 species of three families, with an effort of 27,138 m of mist net opened per hour. Subtropical assemblages showed a similar structure to those from tropical landmark, with a dominance of frugivorous Phyllostomid; in addition, a few species were abundant, followed by a long tail of less common species. However, subtropical sites differed due to the dominance of the genus


2007 ◽  
Vol 50 (6) ◽  
pp. 1033-1042 ◽  
Author(s):  
Yzel Rondon Súarez ◽  
Sabrina Bigatão Valério ◽  
Karina Keyla Tondado ◽  
Alexandro Cezar Florentino ◽  
Thiago Rota Alves Felipe ◽  
...  

The influence of spatial, temporal and environmental factors on fish species diversity in headwater streams in Paraguay and Paraná basins, Brazil was examined. A total of 4,605 individuals were sampled, distributed in 60 species. The sampled streams in Paraná basin presented a larger total species richness (42) than Paraguay streams (40). However the estimated richness was larger in Paraguay basin (53) than Paraná streams (50). The streams of Paraná basin had a greater mean species richness and evenness, while more individuals per sample were found in the Paraguay basin. Difference between the sub-basins were found in the Paraguay basin, while for the basin of Paraná, richness and evenness vary significantly between the sub-basins, but the number of individuals varied seasonally. The most important environmental factors to species diversity and abundance were altitude, water temperature, stream width and stream depth for both the basins.


Biologia ◽  
2017 ◽  
Vol 72 (2) ◽  
Author(s):  
Irena Bielańska-Grajner ◽  
Tomasz Mieczan ◽  
Anna Cieplok

AbstractPeat bogs play key roles in preserving the stability of ecological relationships, but are some of the fastest disappearing and most endangered ecosystems in Europe. The aims of this study were: (1) to compare the distribution, species richness, diversity, and density of rotifers in microhabitats of a raised bog; and (2) to verify the hypothesis that rotifer density and species composition are dependent on seasonal factors, moss moisture content, and the dominant species of mosses in the microhabitats. Sampling was done monthly from April to November in 2013–2014 in the bog Moszne in eastern Poland (51°27′28.7″ N, 23°07′15.8″ E). The microhabitats sampled included hummocks, slopes, and hollows. A total of 40 rotifer taxa were identified. The highest species richness occurred in the hollows (40), dominated by


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Tanya A. Petruff ◽  
Joseph R. McMillan ◽  
John J. Shepard ◽  
Theodore G. Andreadis ◽  
Philip M. Armstrong

Abstract Historical declines in multiple insect taxa have been documented across the globe in relation to landscape-level changes in land use and climate. However, declines have either not been universally observed in all regions or examined for all species. Because mosquitoes are insects of public health importance, we analyzed a longitudinal mosquito surveillance data set from Connecticut (CT), United States (U.S.) from 2001 to 2019 to identify changes in mosquito community composition over time. We first analyzed annual site-level collections and metrics of mosquito community composition with generalized linear/additive mixed effects models; we also examined annual species-level collections using the same tools. We then examined correlations between statewide collections and weather variables as well as site-level collections and land cover classifications. We found evidence that the average trap night collection of mosquitoes has increased by ~ 60% and statewide species richness has increased by ~ 10% since 2001. Total species richness was highest in the southern portion of CT, likely due to the northward range expansion of multiple species within the Aedes, Anopheles, Culex, and Psorophora genera. How the expansion of mosquito populations in the northeast U.S. will alter mosquito-borne pathogen transmission in the region will require further investigation.


Sign in / Sign up

Export Citation Format

Share Document