Selective Activation of Angiotensin Type 2 (AT2) Receptor Protects Alveolar Epithelial Cells Against Bleomycin-Induced Injury

Author(s):  
R. Alcaraz ◽  
A. Shenoy ◽  
U. Steckelings ◽  
M. Katovich ◽  
C. Sumners ◽  
...  
2019 ◽  
Vol 2019 ◽  
pp. 1-14 ◽  
Author(s):  
Eriko Fukui ◽  
Soichiro Funaki ◽  
Kenji Kimura ◽  
Toru Momozane ◽  
Atsuomi Kimura ◽  
...  

Chronic obstructive pulmonary disease is a leading cause of mortality globally, with no effective therapy yet established. Adipose tissue-derived stem cells (ADSCs) are useful for ameliorating lung injury in animal models. However, whether ADSCs differentiate into functional cells remains uncertain, and no study has reported on the mechanism by which ADSCs improve lung functionality. Thus, in this study, we examined whether ADSCs differentiate into lung alveolar cells and are able to ameliorate lung injury caused by elastase-induced emphysema in model mice. Here, we induced ADSCs to differentiate into type 2 alveolar epithelial cells in vitro. We demonstrated that ADSCs can differentiate into type 2 alveolar epithelial cells in an elastase-induced emphysematous lung and that ADSCs improve pulmonary function of emphysema model mice, as determined with spirometry and 129Xe MRI. These data revealed a novel function for ADSCs in promoting repair of the damaged lung by direct differentiation into alveolar epithelial cells.


1998 ◽  
Vol 274 (5) ◽  
pp. L714-L720 ◽  
Author(s):  
Sue Buckley ◽  
Lora Barsky ◽  
Barbara Driscoll ◽  
Kenneth Weinberg ◽  
Kathryn D. Anderson ◽  
...  

Apoptosis is a genetically controlled cellular response to developmental stimuli and environmental insult that culminates in cell death. Sublethal hyperoxic injury in rodents is characterized by a complex but reproducible pattern of lung injury and repair during which the alveolar surface is damaged, denuded, and finally repopulated by type 2 alveolar epithelial cells (AEC2). Postulating that apoptosis might occur in AEC2 after hyperoxic injury, we looked for the hallmarks of apoptosis in AEC2 from hyperoxic rats. A pattern of increased DNA end labeling, DNA laddering, and induction of p53, p21, and Bax proteins, strongly suggestive of apoptosis, was seen in AEC2 cultured from hyperoxic rats when compared with control AEC2. In contrast, significant apoptosis was not detected in freshly isolated AEC2 from oxygen-treated rats. Thus the basal culture conditions appeared to be insufficient to ensure the ex vivo survival of AEC2 damaged in vivo. The oxygen-induced DNA strand breaks were blocked by the addition of 20 ng/ml of keratinocyte growth factor (KGF) to the culture medium from the time of plating and were partly inhibited by Matrigel or a soluble extract of Matrigel. KGF treatment resulted in a partial reduction in the expression of the p21, p53, and Bax proteins but had no effect on DNA laddering. We conclude that sublethal doses of oxygen in vivo cause damage to AEC2, resulting in apoptosis in ex vivo culture, and that KGF can reduce the oxygen-induced DNA damage. We speculate that KGF plays a role as a survival factor in AEC2 by limiting apoptosis in the lung after acute hyperoxic injury.


CHEST Journal ◽  
1975 ◽  
Vol 67 (2) ◽  
pp. 36S-37S ◽  
Author(s):  
Robert Mason ◽  
Mary C. Williams ◽  
John A. Clements

Author(s):  
Sonia Garcia-Hernandez ◽  
Ricardo Gutierrez ◽  
Lucio Diaz-Flores ◽  
Jesus Villar ◽  
Francisco Valladares

Author(s):  
Bruno Ribeiro Baptista ◽  
Maeva Zysman ◽  
Rachid Souktani ◽  
Clement Giffard ◽  
Muriel Lize ◽  
...  

2012 ◽  
Vol 2012 ◽  
pp. 1-4 ◽  
Author(s):  
Nicolina De Rosa ◽  
Alfonso Maiorino ◽  
Ilaria De Rosa ◽  
Carlo Curcio ◽  
Carmine Sellitto ◽  
...  

The alveolar adenoma of the lung is a rare benign tumor characterized by a proliferation of both the alveolar epithelial cells and the mesenchymal septal cells. Immunohistochemically, the epithelial cells stain for cytokeratin (CK) AE1AE3, CK7, thyroid transcription factor 1 (TTF1), and surfactant apoprotein confirming the derivation by the type 2 pneumocytes. The stromal cells are negative for these markers but they show focally smooth muscle and muscle-specific actin positivity. We describe two cases that showed immunohistochemically a CD34 positivity of the mesenchymal septal cells. This aspect has been previously described in a two cases report, but not emphasized by the authors as a distinctive feature of the lesion. We consider this CD34 positivity as a marker of immaturity or stemness of the lesional septal spindle cells, that could be responsible of the different phenotypic and morphological profile of the interstitial cells, that could be, therefore, considered neoplastic and not reactive.


Sign in / Sign up

Export Citation Format

Share Document