Carpology of the genus Tragopogon L. (Asteraceae)

Phytotaxa ◽  
2015 ◽  
Vol 201 (1) ◽  
pp. 27 ◽  
Author(s):  
Alexander P. Sukhorukov ◽  
Maya Nilova

67 species of Tragopogon were investigated with regard to fruit anatomy. The outer achenes, especially the beak and the central part of the seed-containing body, provide the most valuable features (diameter and outlines of the body and the beak, and arrangement of the mechanical elements in the body parenchyma). Some specimens of widely distributed taxa (e.g. T. capitatus, T. dubius, T. pratensis, T. pseudomajor) show variation in the character set and require more investigation prior to further taxonomic treatment. The species studied are classified into informal groups to demonstrate the diversity of carpological traits within the genus, and a comparison is made with the existing molecular phylogeny. The separation of the genus Geropogon from Tragopogon is supported by the achene anatomy.

ZooKeys ◽  
2018 ◽  
Vol 808 ◽  
pp. 123-160 ◽  
Author(s):  
Ayman Khamis Elsayed ◽  
Junichi Yukawa ◽  
Makoto Tokuda

The genus Asteralobia (Diptera, Cecidomyiidae, Asphondyliini, Schizomyiina) was erected by Kovalev (1964) based on the presence of constrictions on the cylindrical male flagellomeres. In the present study, we examine the morphological features of Asteralobia and Schizomyia and found that the male flagellomeres are constricted also in Schizomyiagaliorum, the type species of Schizomyia. Because no further characters clearly separating Asteralobia from Schizomyia were observed, we synonymize Asteralobia under Schizomyia. Molecular phylogenetic analysis strongly supports our taxonomic treatment. We describe five new species of Schizomyia from Japan, S.achyranthesae Elsayed & Tokuda, sp. n., S.diplocyclosae Elsayed & Tokuda, sp. n., S.castanopsisae Elsayed & Tokuda, sp. n., S.usubai Elsayed & Tokuda, sp. n., and S.paederiae Elsayed & Tokuda, sp. n., and redescribe three species, S.galiorum Kieffer, S.patriniae Shinji, and S.asteris Kovalev. A taxonomic key to the Japanese Schizomyia species is provided.


2021 ◽  
Vol 53 (1) ◽  
pp. 117-133
Author(s):  
Bibiana Moncada ◽  
Clifford W. Smith ◽  
Robert Lücking

AbstractThe taxonomy of the genus Sticta in Hawaii is reassessed, based on a separately published molecular phylogeny using the fungal barcoding marker ITS. Based on Magnusson and Zahlbruckner's treatment from 1943 and Magnusson's catalogue from 1955, seven species of Sticta and three infraspecific taxa had been reported from the archipelago, all widespread except the putative endemic S. plumbicolor. Here we provide a taxonomic treatment of 13 taxa, 12 species and one subspecies, distinguished in a previous phylogenetic analysis: S. acyphellata, S. andina, S. antoniana, S. emmanueliana, S. flynnii, S. fuliginosa, S. hawaiiensis, S. limbata, S. plumbicolor, S. scabrosa subsp. hawaiiensis, S. smithii, S. tomentosa and S. waikamoi. All taxa are described, discussed and illustrated and a dichotomous key is presented. The implications of revised species taxonomies for studies in other fields such as ecology, ecophysiology, biogeography, biochemistry, and applications such as environmental monitoring are discussed. We also propose a protocol to use Sticta lichens to monitor the environmental health of Hawaiian ecosystems.


Author(s):  
C. M. Sperberg-McQueen

One of Leibniz’s many projects for improving the world involved the construction of an encyclopedia which would lay out the body of existing knowledge and enable the systematic development of more. Ideally, the encyclopedia should be formulated in a philosophical language and written in a real character (a set of symbols, a universal character set, whose symbols denote not the words of a natural language but the objects of the real world). Properly constructed, the real character would enable a calculus of reasoning: a set of mechanical rules for logical inference. We may smile at Leibniz’s idealism; few modern minds can share his optimism that we can reduce all complex concepts to uniquely determined combinations of primitive atomic ideas. But there is a reason Leibniz’s ideas continue to inspire modern readers, and many of the same ideals motivate some of our best work in markup languages.


2018 ◽  
Vol 2018 ◽  
pp. 1-10 ◽  
Author(s):  
Jiahui Sun ◽  
Shuo Shi ◽  
Jinlu Li ◽  
Jing Yu ◽  
Ling Wang ◽  
...  

Maleae consists of economically and ecologically important plants. However, there are considerable disputes on generic circumscription due to the lack of a reliable phylogeny at generic level. In this study, molecular phylogeny of 35 generally accepted genera in Maleae is established using 15 chloroplast regions. Gillenia is the most basal clade of Maleae, followed by Kageneckia + Lindleya, Vauquelinia, and a typical radiation clade, the core Maleae, suggesting that the proposal of four subtribes is reasonable. In the core Maleae including 31 genera, chloroplast gene data support that the four Malus-related genera should better be merged into one genus and the six Sorbus-related genera would be classified into two genera, whereas all Photinia-related genera should be accepted as distinct genera. Although the phylogenetic relationships among the genera in Maleae are much clearer than before, it is still premature to make a formal taxonomic treatment for these genera.


Nature ◽  
2021 ◽  
Author(s):  
Elizabeth C. Turner

AbstractMolecular phylogeny indicates that metazoans (animals) emerged early in the Neoproterozoic era1, but physical evidence is lacking. The search for animal fossils from the Proterozoic eon is hampered by uncertainty about what physical characteristics to expect. Sponges are the most basic known animal type2,3; it is possible that body fossils of hitherto-undiscovered Proterozoic metazoans might resemble aspect(s) of Phanerozoic fossil sponges. Vermiform microstructure4,5, a complex petrographic feature in Phanerozoic reefal and microbial carbonates, is now known to be the body fossil of nonspicular keratosan demosponges6–10. This Article presents petrographically identical vermiform microstructure from approximately 890-million-year-old reefs. The millimetric-to-centimetric vermiform-microstructured organism lived only on, in and immediately beside reefs built by calcifying cyanobacteria (photosynthesizers), and occupied microniches in which these calcimicrobes could not live. If vermiform microstructure is in fact the fossilized tissue of keratose sponges, the material described here would represent the oldest body-fossil evidence of animals known to date, and would provide the first physical evidence that animals emerged before the Neoproterozoic oxygenation event and survived through the glacial episodes of the Cryogenian period.


2020 ◽  
Vol 43 ◽  
Author(s):  
David Spurrett

Abstract Comprehensive accounts of resource-rational attempts to maximise utility shouldn't ignore the demands of constructing utility representations. This can be onerous when, as in humans, there are many rewarding modalities. Another thing best not ignored is the processing demands of making functional activity out of the many degrees of freedom of a body. The target article is almost silent on both.


Author(s):  
Wiktor Djaczenko ◽  
Carmen Calenda Cimmino

The simplicity of the developing nervous system of oligochaetes makes of it an excellent model for the study of the relationships between glia and neurons. In the present communication we describe the relationships between glia and neurons in the early periods of post-embryonic development in some species of oligochaetes.Tubifex tubifex (Mull. ) and Octolasium complanatum (Dugès) specimens starting from 0. 3 mm of body length were collected from laboratory cultures divided into three groups each group fixed separately by one of the following methods: (a) 4% glutaraldehyde and 1% acrolein fixation followed by osmium tetroxide, (b) TAPO technique, (c) ruthenium red method.Our observations concern the early period of the postembryonic development of the nervous system in oligochaetes. During this period neurons occupy fixed positions in the body the only observable change being the increase in volume of their perikaryons. Perikaryons of glial cells were located at some distance from neurons. Long cytoplasmic processes of glial cells tended to approach the neurons. The superimposed contours of glial cell processes designed from electron micrographs, taken at the same magnification, typical for five successive growth stages of the nervous system of Octolasium complanatum are shown in Fig. 1. Neuron is designed symbolically to facilitate the understanding of the kinetics of the growth process.


Sign in / Sign up

Export Citation Format

Share Document