scholarly journals Taxonomic revision of the spider family Penestomidae (Araneae, Entelegynae)

Zootaxa ◽  
2010 ◽  
Vol 2534 (1) ◽  
pp. 1 ◽  
Author(s):  
JEREMY A. MILLER ◽  
CHARLES E. GRISWOLD ◽  
CHARLES R. HADDAD

Conflicting character evidence and a scarcity of male specimens has historically made placement of the spider subfamily Penestominae Simon problematic. The Penestominae was recently removed from the family Eresidae and promoted to family rank based on the results of a molecular phylogenetic study; a complementary taxonomic revision of the Penestomidae is presented here. Penestomidae contains a single genus, Penestomus Simon, 1902. The genus Wajane Lehtinen, 1967 was previously included in the Penestominae, and distinguished from Penestomus based on the lack of a cribellum. Wajane is, in fact, cribellate, and is here synonymized with Penestomus New synonymy. Nine Penestomus species are recognized: four species are redescribed (P. planus Simon, 1902, P. croeseri Dippenaar-Schoeman, 1989, P. stilleri (Dippenaar-Schoeman, 1989), new combination, and P. armatus (Lehtinen, 1967)) new combination, and five species are newly described (P. egazini sp. nov., P. kruger sp. nov., P. montanus sp. nov., P. prendinii sp. nov., and P. zulu sp. nov.). Male specimens are rare in collections; only P. egazini, P. montanus, and P. armatus are known from males, and only P. armatus is unknown from females. A dichotomous key to the species is provided. Data elements in this work have been disseminated across multiple electronic venues, including images on Morphbank, distribution data exposed through GBIF and explorable using Google Earth, new nomenclatural acts registered with ZooBank, and species pages on the Encyclopedia of Life. Where available, species descriptions include links to molecular sequence data on GenBank.

MycoKeys ◽  
2018 ◽  
Vol 40 ◽  
pp. 13-28 ◽  
Author(s):  
Alejandrina Barcenas-Peña ◽  
Steven D. Leavitt ◽  
Jen-Pan Huang ◽  
Felix Grewe ◽  
H. Thorsten Lumbsch

Xanthoparmelia(Parmeliaceae, Ascomycota) is the most species-rich genus of lichen-forming fungi. Species boundaries are based on morphological and chemical features, varying reproductive strategies and, more recently, molecular sequence data. The isidiateXanthoparmeliamexicanagroup is common in arid regions of North and Central America and includes a range of morphological variation and variable secondary metabolites – salazinic or stictic acids mainly. In order to better understand the evolutionary history of this group and potential taxonomic implications, a molecular phylogeny representing 58 ingroup samples was reconstructed using four loci, including ITS, mtSSU, nuLSU rDNA and MCM7. Results indicate the existence of multiple, distinct lineages phenotypically agreeing withX.mexicana.One of these isidiate, salazinic acid-containing lineages is described here as a new species,X.pedregalensissp. nov., including populations from xerophytic scrub vegetation in Pedregal de San Angel, Mexico City.X.mexicanas. str. is less isidiate thanX.pedregalensisand has salazinic and consalazinic acid, occasionally with norstictic acid; whereasX.pedregalensiscontains salazinic and norstictic acids and an unknown substance. Samples from the Old World, morphologically agreeing withX.mexicana, are only distantly related toX.mexicanas. str. Our results indicate thatX.mexicanais likely less common than previously assumed and ongoing taxonomic revisions are required for isidiateXanthoparmeliaspecies.


Zootaxa ◽  
2017 ◽  
Vol 4238 (1) ◽  
pp. 58 ◽  
Author(s):  
ATSUSHI MOCHIZUKI ◽  
CHARLES S. HENRY ◽  
PETER DUELLI

The small lacewing genus Apertochrysa comprises species from Africa, Asia and Australia. All lack a tignum, but otherwise resemble distantly related genera. We show that Apertochrysa does not form a monophyletic clade, based on analyses of molecular sequence data and morphological traits such as the presence and shape of the male gonapsis, wing venation, and larval setae. Apertochrysa kichijoi forms a clade with Eremochrysa, Suarius and Chrysemosa, whereas A. albolineatoides belongs to a clade that includes Cunctochrysa. Apertochrysa albolineatoides should become a new combination as Cunctochrysa albolineatoides, while A. kichijoi will have to be transferred to a new genus. The Australian A. edwardsi, the African A. eurydera and the type species of the genus Apertochrysa, A. umbrosa, join the large Pseudomallada group. Relationships of A. umbrosa are less certain, because for it we could amplify only one of the three nuclear genes used in the overall analysis. However, in all morphological traits tested, that species strongly resembles A. edwardsi and A. eurydera and thus is very likely just another exceptional Pseudomallada lacking a tignum. The fate of the genus name Apertochrysa depends on additional molecular and morphological analyses of A. umbrosa. 


Phytotaxa ◽  
2014 ◽  
Vol 189 (1) ◽  
pp. 186 ◽  
Author(s):  
JOEL A. MERCADO-DÍAZ ◽  
ROBERT LÜCKING ◽  
SITTIPORN PARNMEN

Two new genera and twelve new species of Graphidaceae are described from Puerto Rico. The two new genera, Borinquenotrema and Paratopeliopsis, are based on a combination of molecular sequence data and phenotype characters. Borinquenotrema, with the single new species B. soredicarpum, features rounded ascomata developing beneath and persistently covered with soralia and with an internal anatomy reminescent of Carbacanthographis; it is close to the  tribe Ocellularieae. Paratopeliopsis, including the single new species P. caraibica, resembles a miniature Topeliopsis but differs in the distinctly farinose thallus and the small, brown ascospores; it is not closely related to the latter genus but belongs in tribe Thelotremateae. The other ten new species belong in the genera Acanthotrema, Clandestinotrema, Compositrema, Fissurina, Ocellularia, and Thalloloma. Acanthotrema alboisidiatum is closely related to A. brasilianum but differs in the short, white isidia resembling insect eggs. Clandestinotrema portoricense has a unique ascospore type with a longitudinal septum only in the proximal cell. Compositrema borinquense resembles a species of Stegobolus but belongs in Compositrema based on sequence data, and is characterized by ascomata with a unique columella composed of thick, irregularly radiating strands. The second new species in this genus, C. isidiofarinosum, differs by its ecorticate, farinose thallus with scattered, corticate isidia and by its small ascomata with inconspicuous columella. The three new species of Fissurina all have 3-septate ascospores and are otherwise characterized by an isidiate thallus and stellate, orange-yellow lirellae (F. aurantiacostellata), a verrucose thallus strongly encrusted with calcium oxalate crystals and white, irregularly branched lirellae (F. crystallifera), and myriotremoid ascomata arranged in short lines (F. monilifera). Ocellularia portoricensis belongs in the core group of Ocellularia and differs from O. cavata in the white medulla and the larger ascospores becoming brown, whereas O. vulcanisorediata produces prominent soralia and immersed ascomata with apically carbonized excipulum and columella and small, transversely septate, hyaline ascospores; it is closely related to O. conformalis. Finally, Thalloloma rubromarginatum resembles T. haemographum in the brownish lirellae with bright red margin but differs from that and other species in the corticate thallus and the norstictic acid chemistry. The new combination Ampliotrema rimosum (Hale) Mercado-Díaz, Lücking & Parnmen is also proposed. Considering the current biodiversity knowledge on this family, the high level of endemism observed in other groups of organisms in the island, and the relatively high number of Graphidaceae described, it is highly likely that at least some of these new taxa are endemic to the island. This view is further supported by the unique features of several of the new species, representing novel characters in the corresponding genera.


Phytotaxa ◽  
2015 ◽  
Vol 204 (4) ◽  
pp. 265 ◽  
Author(s):  
Thiago Jose de Carvalho Andre ◽  
CHELSEA SPECHT ◽  
SHAYLA SALZMAN ◽  
CLARISSE PALMA-SILVA ◽  
TÂNIA WENDT

While most species within the genus Chamaecostus (Costaceae) are well defined, the broad geographic range and long list of synonyms associated with Chamaecostus subsessilis led us to believe there may be some cryptic species within the complex. We thus investigate the phylogenetic relationships of species in the Chamaecostus lineage and specifically test the monophyly and diversity of the Chamaecostus subsessilis species complex from a population perspective by analyzing molecular sequence data and leaf morphometrics. We interpret evolutionary trends across the entire genus based on a molecular character-based phylogenetic hypothesis that includes all currently described species of Chamaecostus. Our results show that while Chamaecostus is strongly monophyletic, C. cuspidatus is found to be sister to a clade of some but not all samples of C. subsessilis, making it necessary to acknowledge more than one species in the C. subsessilis complex. Herbarium specimens of the C. subsessilis complex could be assigned based on geographic proximity to one of the major three clades recovered in the phylogenetic analysis. Leaf morphometric measurements were performed on each of these lineages and traits were tested to detect differences among phylogenetic lineages. We conclude by proposing the recognition of a new combination, Chamaecostus acaulis, which we describe.


Nova Hedwigia ◽  
2011 ◽  
Vol 93 (1) ◽  
pp. 47-56 ◽  
Author(s):  
Juan Guerra ◽  
Juan F. Jiménez-Martínez ◽  
María J. Cano ◽  
Juan A. Jiménez-Fernández

Phytotaxa ◽  
2014 ◽  
Vol 176 (1) ◽  
pp. 219 ◽  
Author(s):  
ASHA J. DISSANAYAKE ◽  
RUVISHIKA S. JAYAWARDENA ◽  
SARANYAPHAT BOONMEE ◽  
KASUN M. THAMBUGALA ◽  
QING TIAN ◽  
...  

The family Myriangiaceae is relatively poorly known amongst the Dothideomycetes and includes genera which are saprobic, epiphytic and parasitic on the bark, leaves and branches of various plants. The family has not undergone any recent revision, however, molecular data has shown it to be a well-resolved family closely linked to Elsinoaceae in Myriangiales. Both morphological and molecular characters indicate that Elsinoaceae differs from Myriangiaceae. In Elsinoaceae, small numbers of asci form in locules in light coloured pseudostromata, which form typical scab-like blemishes on leaf or fruit surfaces. The coelomycetous, “Sphaceloma”-like asexual state of Elsinoaceae, form more frequently than the sexual state; conidiogenesis is phialidic and conidia are 1-celled and hyaline. In Myriangiaceae, locules with single asci are scattered in a superficial, coriaceous to sub-carbonaceous, black ascostromata and do not form scab-like blemishes. No asexual state is known. In this study, we revisit the family Myriangiaceae, and accept ten genera, providing descriptions and discussion on the generic types of Anhellia, Ascostratum, Butleria, Dictyocyclus, Diplotheca, Eurytheca, Hemimyriangium, Micularia, Myriangium and Zukaliopsis. The genera of Myriangiaceae are compared and contrasted. Myriangium duriaei is the type species of the family, while Diplotheca is similar and may possibly be congeneric. The placement of Anhellia in Myriangiaceae is supported by morphological and molecular data. Because of similarities with Myriangium, Ascostratum (A. insigne), Butleria (B. inaghatahani), Dictyocyclus (D. hydrangea), Eurytheca (E. trinitensis), Hemimyriangium (H. betulae), Micularia (M. merremiae) and Zukaliopsis (Z. amazonica) are placed in Myriangiaceae. Molecular sequence data from fresh collections is required to confirm the relationships and placement of the genera in this family.


2009 ◽  
Vol 364 (1527) ◽  
pp. 2197-2207 ◽  
Author(s):  
Peter G. Foster ◽  
Cymon J. Cox ◽  
T. Martin Embley

The three-domains tree, which depicts eukaryotes and archaebacteria as monophyletic sister groups, is the dominant model for early eukaryotic evolution. By contrast, the ‘eocyte hypothesis’, where eukaryotes are proposed to have originated from within the archaebacteria as sister to the Crenarchaeota (also called the eocytes), has been largely neglected in the literature. We have investigated support for these two competing hypotheses from molecular sequence data using methods that attempt to accommodate the across-site compositional heterogeneity and across-tree compositional and rate matrix heterogeneity that are manifest features of these data. When ribosomal RNA genes were analysed using standard methods that do not adequately model these kinds of heterogeneity, the three-domains tree was supported. However, this support was eroded or lost when composition-heterogeneous models were used, with concomitant increase in support for the eocyte tree for eukaryotic origins. Analysis of combined amino acid sequences from 41 protein-coding genes supported the eocyte tree, whether or not composition-heterogeneous models were used. The possible effects of substitutional saturation of our data were examined using simulation; these results suggested that saturation is delayed by among-site rate variation in the sequences, and that phylogenetic signal for ancient relationships is plausibly present in these data.


Phytotaxa ◽  
2021 ◽  
Vol 514 (3) ◽  
pp. 247-260
Author(s):  
KASUN THAMBUGALA ◽  
DINUSHANI DARANAGAMA ◽  
SAGARIKA KANNANGARA ◽  
THENUKA KODITUWAKKU

Endophytic fungi are a diverse group of microorganisms that live asymptomatically in healthy tissues of host and they have been reported from all kinds of plant tissues such as leaves, stems, roots, flowers, and fruits. In this study, fungal endophytes associated with tea leaves (Camellia sinensis) were collected from Kandy, Kegalle, and Nuwara Eliya districts in Sri Lanka and were isolated, characterized, and identified. A total of twenty endophytic fungal isolates belonging to five genera were recovered and ITS-rDNA sequence data were used to identify them. All isolated endophytic fungal strains belong to the phylum Ascomycota and the majority of these isolates were identified as Colletotrichum species. Phyllosticta capitalensis was the most commonly found fungal endophyte in tea leaves and was recorded in all three districts where the samples were collected. This is the very first investigation on fungal endophytes associated with C. sinensis in Sri Lanka based on molecular sequence data. In addition, a comprehensive account of known endophytic fungi reported worldwide on Camellia sinensis is provided.


Mammalia ◽  
2019 ◽  
Vol 83 (2) ◽  
pp. 180-189 ◽  
Author(s):  
Adam W. Ferguson ◽  
Houssein R. Roble ◽  
Molly M. McDonough

AbstractThe molecular phylogeny of extant genets (Carnivora, Viverridae,Genetta) was generated using all species with the exception of the Ethiopian genetGenetta abyssinica. Herein, we provide the first molecular phylogenetic assessment ofG. abyssinicausing molecular sequence data from multiple mitochondrial genes generated from a recent record of this species from the Forêt du Day (the Day Forest) in Djibouti. This record represents the first verified museum specimen ofG. abyssinicacollected in over 60 years and the first specimen with a specific locality for the country of Djibouti. Multiple phylogenetic analyses revealed conflicting results as to the exact relationship ofG. abyssinicato otherGenettaspecies, providing statistical support for a sister relationship to all other extant genets for only a subset of mitochondrial analyses. Despite the inclusion of this species for the first time, phylogenetic relationships amongGenettaspecies remain unclear, with limited nodal support for many species. In addition to providing an alternative hypothesis of the phylogenetic relationships among extant genets, this recent record provides the first complete skeleton of this species to our knowledge and helps to shed light on the distribution and habitat use of this understudied African small carnivore.


2013 ◽  
Vol 58 (4) ◽  
Author(s):  
Kurt Galbreath ◽  
Kristina Ragaliauskaite ◽  
Leonas Kontrimavichus ◽  
Arseny Makarikov ◽  
Eric Hoberg

AbstractHymenolepidid cestodes in Myodes glareolus from Lithuania and additional specimens originally attributed to Arostrilepis horrida from the Republic of Belarus are now referred to A. tenuicirrosa. Our study includes the first records of A. tenuicirrosa from the European (western) region of the Palearctic, and contributes to the recognition of A. horrida (sensu lato) as a complex of cryptic species distributed broadly across the Holarctic. Specimens of A. tenuicirrosa from Lithuania were compared to cestodes representing apparently disjunct populations in the eastern Palearctic based on structural characters of adult parasites and molecular sequence data from nuclear (ITS2) and mitochondrial (cytochrome b) genes. Morphological and molecular data revealed low levels of divergence between eastern and western populations. Phylogeographic relationships among populations and host biogeographic history suggests that limited intraspecific diversity within A. tenuicirrosa may reflect a Late Pleistocene transcontinental range expansion from an East Asian point of origin.


Sign in / Sign up

Export Citation Format

Share Document