The identity of Aplocheilus andamanicus (Köhler, 1906) (Teleostei: Cyprinodontiformes), an endemic Killifish from the Andaman Islands, with notes on Odontopsis armata van Hasselt

Zootaxa ◽  
2018 ◽  
Vol 4382 (1) ◽  
pp. 159
Author(s):  
UNMESH KATWATE ◽  
PRADEEP KUMKAR ◽  
RALF BRITZ ◽  
RAJEEV RAGHAVAN ◽  
NEELESH DAHANUKAR

In his work on the fishes of the Andaman Islands, Francis Day (1870) collected large-sized specimens of Aplocheilus from the south Andamans. Despite differences in the size and dorsal-fin ray counts, Day refrained from recognising the Andaman Aplocheilus as a distinct species and considered it as Aplocheilus panchax, a species distributed in the Ganges delta and across the eastern coast of mainland India. However, Day mentioned the differences in fin-ray counts between these two populations. Subsequently Köhler (1906) described the Andaman population as Haplochilus andamanicus (now in Aplocheilus), referring to the diagnostic characters initially discovered by Day. This species failed to receive recognition from taxonomists, because of the uncertainty regarding the validity of the species and its questionable synonymy with A. panchax. In this study, based on morphological and molecular evidence, we demonstrate that A. andamanicus is indeed a distinct and valid species, which can easily be diagnosed from the widespread A. panchax. While resolving the identity of A. andamanicus, we also demonstrate that the congeners from southeast Asia form a genetically distinct group for which the name Odontopsis armata is available. 

2021 ◽  
Vol 750 ◽  
pp. 52-69
Author(s):  
Man-Kwan Wong ◽  
Mao-Ying Lee ◽  
Wei-Jen Chen

With six valid species, Luciobrotula is a small genus of the family Ophidiidae, commonly known as cusk-eels. They are benthopelagic fishes occurring at depths ranging from 115–2300 m in the Atlantic, Indian, and Pacific Oceans. Among them, Luciobrotula bartschi is the only known species in the West Pacific. Three specimens of Luciobrotula were collected from the Philippine Sea, Bismarck Sea, and Solomon Sea in the West Pacific during the AURORA, PAPUA NIUGINI, and MADEEP expeditions under the Tropical Deep-Sea Benthos program, and all of them were initially identified as L. bartschi. Subsequent examination with integrative taxonomy indicates that they belong to two distinct species, with the specimen collected from the Solomon Sea representing a new species, which is described here. In terms of morphology, Luciobrotula polylepis sp. nov. differs from its congeners by having a relatively longer lateral line (end of the lateral line below the 33rd dorsal-fin ray) and fewer vertebrae (abdominal vertebrae 13, total vertebrae 50). In the inferred COI gene tree, the two western Pacific species of Luciobrotula do not form a monophyletic group. The genetic K2P distance between the two species is 13.8% on average at the COI locus.


2015 ◽  
Vol 28 (4) ◽  
pp. 234 ◽  
Author(s):  
Kelly A. Shepherd ◽  
Kevin. R. Thiele ◽  
Jane Sampson ◽  
David Coates ◽  
Margaret Byrne

A rare, new tetraploid Atriplex, restricted to two populations ~30km apart in arid Western Australia, is supported as a distinct species by morphological and molecular evidence. Genetic analyses using amplified fragment length polymorphisms (AFLPs) showed significant genetic divergence between the two populations. In contrast, an ordination based on elliptic Fourier descriptors for leaf and bracteole shape did not identify any consistent morphological differentiation. Although the level of genetic differentiation is similar to that previously reported between subspecies in other Atriplex, the populations of the new taxon are described herein as A. yeelirrie K.A.Sheph. & K.R.Thiele, without taxonomic recognition at the intraspecific level. We outline our reasoning for this decision and discuss the implications for appropriate conservation management of the species, structured into two genetically distinct populations.


Zootaxa ◽  
2019 ◽  
Vol 4590 (4) ◽  
pp. 457
Author(s):  
IRENE A. CARDOSO ◽  
GHENNIE T. RODRÍGUEZ-REY ◽  
MARIANA TEROSSI ◽  
CÁTIA BARTILOTTI ◽  
CRISTIANA S. SEREJO

Deep-sea shrimps of the species Plesionika acanthonotus (Smith, 1882) and P. holthuisi Crosnier & Forest, 1968 are morphologically similar and exhibit overlapping amphi-Atlantic distributions. In the literature, through morphological studies, there are reports of doubts about the validity of P. holthuisi and some authors believe that the eastern and western Atlantic populations of P. acanthonothus could represent two distinct species. The objective of the present study was to use molecular data to elucidate the taxonomic status of the two populations of P. acanthonothus. DNA sequences of two mitochondrial genes (16S rDNA and Cytochrome Oxidase subunit I) and a nuclear gene (Histone 3) were obtained for both species and for both populations of P. acanthonotus. The sequences were also obtained from Genbank for comparison. The trees (separate and multi-locus/partitioned genes) were generated by Bayesian Inference analyzes, and genetic divergence (Kimura-2-parameters) was also calculated. All specimens that had their DNA sequenced were examined morphologically to confirm their identification; morphological variations were noted. The genetic data showed that Plesionika holthuisi is closely related to P. acanthonotus, but clearly separated, indicating that P. holthuisi is a valid species. In the multi-locus analysis, the P. acanthonothus specimens were divided into two clades, one with the eastern Atlantic specimens and another with the western Atlantic specimens. However, this genetic separation was considered to be a population structuring for three reasons: (1) the genetic divergences of the two mitochondrial genes between these two groups (eastern Atlantic X western Atlantic) were smaller than the interspecific divergence for Plesionika; (2) the P. acanthonothus sequences of the Histone 3 gene showed no genetic variation; (3) in the analyzed individuals, no valid morphological character was found to support this separation. Thus, the conclusion of this study is that P. holthuisi probably is a valid species and P. acanthonothus presents two populations with mitochondrial divergences that could be in the process of speciation, but which currently represent only one species.


ZooKeys ◽  
2020 ◽  
Vol 902 ◽  
pp. 107-150
Author(s):  
Gernot K. Englmaier ◽  
Genanaw Tesfaye ◽  
Nina G. Bogutskaya

In the present study, populations of small-sized smiliogastrin barbs with a thickened and serrated last simple dorsal-fin ray distributed in the Main Ethiopian Rift were analysed. An integrated approach combining genetic markers and a variety of morphological methods based on a wide set of characters, including osteology and sensory canals, proved to be very productive for taxonomy in this group of fishes. The results showed that Ethiopian Enteromius species with a serrated dorsal-fin ray are distant from the true E. paludinosus (with E. longicauda as a synonym) and the so-called E. paludinosus complex involves several supposedly valid species with two distinct species occurring in the Main Ethiopian Rift area. A new species, Enteromius yardiensissp. nov., is described from the Afar Depression in the north-eastern part of the Northern Main Ethiopian Rift. Enteromius akakianus is resurrected as a valid species including populations from the Central Main Ethiopian Rift (basins of lakes Langano, Ziway, and Awasa). No genetic data were available for E. akakianus from its type locality. Enteromius yardiensissp. nov. is clearly distant from E. akakianus from the Central Main Ethiopian Rift by CO1 and cytb barcodes: pairwise distances between the new species and the Ethiopian congeners were 5.4 % to 11.0 %. Morphologically, the new species most clearly differs from all examined Ethiopian congeners by three specialisations which are unique in the group: the absence of the anterior barbel, the absence of the medial branch of the supraorbital sensory canal, and few, 1–3, commonly two, scale rows between the lateral line and the anus.


Zootaxa ◽  
2019 ◽  
Vol 4576 (1) ◽  
pp. 109 ◽  
Author(s):  
ALEXANDRE PIRES MARCENIUK ◽  
RODRIGO ANTUNES CAIRES ◽  
LEONARDO MACHADO ◽  
NAJILA NOLIE CATARINE DANTAS CERQUEIRA ◽  
RAYLA ROBERTA M. DE S. SERRA ◽  
...  

The genus Orthopristis includes seven valid species, three from the western Atlantic and five from eastern Pacific, while the available identification guides and taxonomic keys incorrectly recognize Orthopristis ruber as the only valid species found on the Atlantic coast of South America. Efforts to expand the inventory of fish species from the northern coast of Brazil led to the identification of two distinct species of Orthopristis from Atlantic South America, based on the analysis of coloration patterns and meristic data, as well as DNA. In the present study, the limits of Orthopristis ruber are reviewed, while Orthopristis scapularis is recognized as a valid species for the northern and northeastern coasts of South America. Based on intermediate morphological characteristics and nuclear DNA markers, a hybrid zone was identified off the state of Espírito Santo, on the eastern Brazilian coast. Additionally, considerations are made on the diversity and biogeography of the coastal marine and estuarine fishes found on the Brazilian coast. 


Zootaxa ◽  
2018 ◽  
Vol 4379 (1) ◽  
pp. 47 ◽  
Author(s):  
JACK M. CRAIG ◽  
LUIZ R. MALABARBA ◽  
WILLIAM G. R. CRAMPTON ◽  
JAMES S. ALBERT

Banded Knifefishes (Gymnotus, Gymnotidae) comprise the most species-rich, ecologically tolerant (eurytopic), and geographically widespread genus of Neotropical electric fishes (Gymnotiformes), with 40 valid species occupying most habitats and regions throughout the humid Neotropics. Despite substantial alpha-taxonomic work in recent years, parts of the genus remain characterized by taxonomic confusion. Here we describe and delimit species of the G. carapo and G. tigre clades from the southern Neotropics, using body proportions (caliper-based morphometrics), fin-ray, scale and laterosensory-pore counts (meristics), quantitative shape differences (geometric morphometrics), osteology, color patterns and electric organ discharges. We report these data from 174 Gymnotus specimens collected from 100 localities throughout the southern Neotropics, and delimit species boundaries in a multivariate statistical framework. We find six species of the G. carapo clade (G. carapo australis, G. cuia n. sp., G. chimarrao, G. omarorum, G. pantanal, and G. sylvius), and two species of the G. tigre clade (G. inaequilabiatus and G. paraguensis) in the southern Neotropics. The new species G. cuia is readily distinguished from the morphologically similar and broadly sympatric G. c. australis by a shorter head and deeper head and body, and from the morphologically similar and sympatric G. omarorum by fewer lateral-line ventral rami and fewer pored lateral-line scales anterior to the first ventral ramus. We also review the geographic distributions of all eight species of the G. carapo and G. tigre clades in the southern Neotropics, showing that G. cuia is the most widespread species in the region. These results affirm the importance of understanding the structure of variation within and between species, both geographic and ontogenetic, in delimiting species boundaries. 


Author(s):  
Tulio F. Villalobos-Guerrero ◽  
Taeseo Park ◽  
Izwandy Idris

Abstract The present study reviews Perinereis Group 2 species from the Eastern and South-eastern Asian seas based on morphological analysis of the types, non-types and original descriptions, and the use of molecular evidence (COI and 16S rDNA) from newly collected material. These species are characterized by having two bar-shaped paragnaths on pharyngeal area VI, which are often deemed conical when small and pointed, triggering misidentifications as to Neanthes species. New terminology and definition for this particular type of bars are proposed, and the generic position of some resembling Neanthes species is also re-assessed. Five species are transferred to Perinereis: Perinereis babuzai comb. nov., P. belawanensis comb. nov., P. kinmenensis comb. nov., P. shigungensis comb. nov. and P. vitabunda comb. nov. ‘Perinereis aibuhitensis’ species group is newly proposed by encompassing species having proximal dorsal ligule similar throughout the body, dorsal cirri short, and blades of heterogomph falcigers straight with long terminal tooth forming a distinct tendon. Perinereis belawanensis comb. nov., P. linea and P. vitabunda comb. nov. are redescribed. Perinereis linea is regarded as a senior synonym of Nereis (Neanthes) orientalis and Perinereis vancaurica tetradentata based on type material, whereas its exotic status in the Mediterranean Sea is questioned. An identification key to all currently valid species within Perinereis Group 2 is also provided.


2011 ◽  
Vol 43 (6) ◽  
pp. 561-567 ◽  
Author(s):  
K. PAPONG ◽  
G. KANTVILAS ◽  
H. T. LUMBSCH

AbstractThe phylogenetic placement of the genus Maronina was studied, based chiefly on phenotypic characters such as thallus colour and anatomy, secondary chemistry, the anatomy of the excipulum and the ascus-type. DNA sequence data of mitochondrial and nuclear ribosomal loci from some of the species support the hypothesis that Maronina is nested within Protoparmelia. Hence, Maronina is reduced to synonymy with Protoparmelia. Comparison of genetic distances suggests that the two varieties within M. orientalis should be regarded as distinct species. Consequently, the new combinations Protoparmelia australiensis (Hafellner & R. W. Rogers) Kantvilas et al., P. corallifera (Kantvilas & Papong) Kantvilas et al., P. hesperia (Kantvilas & Elix) Kantvilas et al., P. multifera (Nyl.) Kantvilas et al., and P. orientalis (Kantvilas & Papong) Kantvilas et al. are proposed.


Author(s):  
J.-C. Huang ◽  
X.-Y. Li ◽  
Y.-P. Li ◽  
R.-S. Zhang ◽  
D.-B. Chen ◽  
...  

Samia ricini (Wm. Jones) and Samia cynthia (Drury) (Lepidoptera: Saturniidae) have been used as traditional sources of food as well as silk-producing insects. However, the phylogenetic relationship between the two silkworms remains to be addressed. In this study, the mitochondrial cytochrome c oxidase subunit 1 (COI) gene sequences corresponding to DNA barcodes from 13 Samia species were analysed, and a DNA barcode-based phylogenetic framework for these Samia species was provided. Phylogenetic analysis showed that multiple individuals of a species could be clustered together. Our analysis revealed a close relationship among Samia yayukae Paukstadt, Peigler and Paukstadt, Samia abrerai Naumann and Peigler, Samia kohlli Naumann and Peigler, Samia naessigi Naumann and Peigler, Samia naumanni Paukstadt, Peigler and Paukstadt, and Samia kalimantanensis Paukstadt and Paukstadt. The mixed clustering relationship and low Kimura-2-parameter (K2P) genetic distance (0.006) between individuals of S. ricini and Samia canningi (Hutton) indicated that the cultivated silkworm S. ricini was derived from the non-cultivated silkworm S. canningi. The remote phylogenetic relationship and high K2P genetic distance (0.039) indicated that S. ricini and S. cynthia are distinct species, thus providing solid molecular evidence that they had entirely independent origins. The relationships between S. kalimantanensis and S. naumanni and between S. cynthia and Samia wangi Naumann and Peigler, as well as the potential cryptic species within S. abrerai were also discussed. This is the first study to assess the DNA barcodes of the genus Samia, which supplements the knowledge of species identification and provides the first molecular phylogenetic framework for Samia species.


Zootaxa ◽  
2021 ◽  
Vol 5072 (6) ◽  
pp. 531-540
Author(s):  
GUILHERME JOSÉ DA COSTA-SILVA ◽  
CLAUDIO OLIVEIRA ◽  
GABRIEL DE SOUZA DA COSTA E SILVA

Rineloricaria is a genus of armored catfish encompassing 67 valid species that are widely distributed throughout the Neotropical region. A new species of Rineloricaria is described from the Paranaíba River, Upper Paraná River basin, southeastern Brazil. Rineloricaria rodriquezae sp. n. is distinguished from its congeners by the combination of the following characters: caudal-fin color pattern with basal dark spot and subterminal dark bar on branched rays interspersed with a hyaline area; five series of lateral plates with two keeled in the mid-dorsal series around the insertion of the first ray of dorsal fin; and unbranched caudal-fin ray extended as long filaments.  


Sign in / Sign up

Export Citation Format

Share Document