Polyzosteria cockroaches in Tasmania (Blattodea: Blattidae: Polyzosteriinae) represent a new, endemic species, with allopatric alpine and coastal sub-populations

Zootaxa ◽  
2021 ◽  
Vol 4926 (3) ◽  
pp. 384-400
Author(s):  
SHASTA C. HENRY ◽  
STEPHEN L. CAMERON ◽  
ADAM SMOLENSKI ◽  
PETER MCQUILLAN

We describe the endemic Tasmanian cockroach, Polyzosteria yingina sp. nov. (Henry), 78 years after it was first documented. Evidence from morphology, biogeography and CO1 barcodes is used to distinguish this species from related mainland Australian taxa it has previously been confused with. Polyzosteria yingina sp. nov. has two strongly allopatric populations: a compact alpine population above 1000m and a dispersed east coastal one at sealevel. However, mitochondrial Control Region D-loop molecular analysis suggests a single species identity for these disparate populations. Detailed internal and external morphological descriptions and photographs of living and preserved type material are presented. We also speculate on some hypotheses which could account for the unusual distribution of this charismatic insect. 

2018 ◽  
Vol 18 (1) ◽  
pp. 3-15 ◽  
Author(s):  
Joanna Warzecha ◽  
Agnieszka Fornal ◽  
Maria Oczkowicz ◽  
Monika Bugno-Poniewierska

Abstract Mitochondrial DNA (mtDNA) is a molecular tool that is very effective in genetic research, including phylogenetic analysis. The non-coding region is the most variable fragment of mtDNA, showing variability in length and nucleobase composition and containing three domains: two hypervariable peripheral regions and the conserved domain (D-loop) in the middle. The Anseriformes are amongst the best studied avian groups, including approximately 150 species and containing geese, swans, ducks (Anatidae), the Magpie goose (Anseranatidae) and screamers (Anhimidae). The most numerous family is the Anatidae, appearing in close relationships within the phylogenetic branches of the species. There are differences between the non-coding region of the Anatidae in comparison to other avian control regions. In the article presented below the control region sequences and the phylogeny of the Anatidae were reviewed.


Genome ◽  
2003 ◽  
Vol 46 (4) ◽  
pp. 565-572 ◽  
Author(s):  
Deborah M Buehler ◽  
Allan J Baker

We sequenced the complete mitochondrial control regions of 11 red knots (Calidris canutus). The control region is 1168 bp in length and is flanked by tRNA glutamate (glu) and the gene ND6 at its 5' end and tRNA phenylalanine (phe) and the gene 12S on its 3' end. The sequence possesses conserved sequence blocks F, E, D, C, CSB-1, and the bird similarity box (BSB), as expected for a mitochondrial copy. Flanking tRNA regions show correct secondary structure, and a relative rate test indicated no significant difference between substitution rates in the sequence we obtained versus the known mitochondrial sequence of turnstones (Charadriiformes: Scolopacidae). These characteristics indicate that the sequence is mitochondrial in origin. To confirm this, we sequenced the control region of a single individual using both purified mitochondrial DNA and genomic DNA. The sequences were identical using both methods. The sequence and methods presented in this paper may now serve as a reference for future studies using knot and other avian control regions. Furthermore, the discovery of five variable sites in 11 knots towards the 3' end of the control region, and the variability of this region in contrast to the more conserved central domain in the alignment between knots and other Charadriiformes, highlights the importance of this area as a source of variation for future studies in knots and other birds.Key words: D-loop, Calidris canutus, Charadriiformes, Aves, evolution.


Genome ◽  
2000 ◽  
Vol 43 (4) ◽  
pp. 613-618 ◽  
Author(s):  
Peter A Ritchie ◽  
David M Lambert

We have determined the nucleotide sequence of the entire mitochondrial control region (CR) of the Adélie penguin (Pygoscelis adeliae) from Antarctica. Like in most other birds, this CR region is flanked by the gene nad6 and transfer (t)RNA trnE(uuc) at the 5' end and the gene rns and trnF(gaa) at the 3' end. Sequence analysis shows that the Adélie penguin CR contains many elements in common with other CRs including the termination associated sequences (TAS), conserved F, E, D, and C boxes, the conserved sequence block (CSB)-1, as well as the putative light and heavy strand promoters sites (LSP-HSP). We report an extraordinarily long avian control region (1758 bp) which can be attributed to the presence, at the 3' peripheral domain, of five 81-bp repeat sequences, each containing a putative LSP-HSP, followed by 30 tetranucleotide microsatellite repeat sequences consisting of (dC-dA-dA-dA)30. The microsatellite and the 81-bp repeat reside in an area known to be transcribed in other species.Key words: Aves, microsatellite, evolution, D-loop, TAS, WANCY.


2012 ◽  
Vol 84 (4) ◽  
pp. 979-999 ◽  
Author(s):  
Grazielle Gomes ◽  
Iracilda Sampaio ◽  
Horacio Schneider

The present study focus on the mitochondrial control region to investigate phylogeographic patterns and population structure in Lutjanus purpureus, and to evaluate the genetic similarity between L. purpureus and L. campechanus. For the initial analysis, 810 base pairs sequence from control region were obtained from 239 specimens of L. purpureus collected from four localities off the Brazilian coast. The results revealed the presence of a single panmictic population characterized by high values of genetic diversity. The 299 base pairs hypervariable portion were used for the combined analysis of L. purpureus and L. campechanus, being 275 haplotypes identified in the 414 specimens. Phylogenetic tree and haplotype network did not indicate phylogeographic substructuring between the two species, but rather an intense intermingling of individuals. Considering their marked morphological similarity, the molecular data presented here indicate that only one species of red snapper exists in the western Atlantic.


2002 ◽  
Vol 8 (1) ◽  
pp. 251-259 ◽  
Author(s):  
Yoshiyuki Baba ◽  
Yuzo Fujimaki ◽  
Siegfried Klaus ◽  
Olga Butorina ◽  
Serguei Drovetskii ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document