scholarly journals Influence of Arbuscular Mycorrhizal Fungi (AMF) Inoculation on Growth and Mycorrhizal Dependency of (<i>Lens culinaris</i> L.) Varieties

2019 ◽  
Vol 4 (1) ◽  
pp. 47 ◽  
Author(s):  
Shah Wali Khan ◽  
Tabassum Yaseen ◽  
Falak Naz ◽  
Syed Abidullah ◽  
Mohammad Kamil
2011 ◽  
Vol 23 (1) ◽  
pp. 33-44 ◽  
Author(s):  
Elcio Liborio Balota ◽  
Oswaldo Machineski ◽  
Priscila Viviane Truber ◽  
Alexandra Scherer ◽  
Fabio Suano de Souza

The physic nut (Jatropha curcas L.) is a perennial tree that occurs naturally in the tropical and subtropical regions of Brazil. Fruits of physic nut present an oil content of 28% on a dry weight basis. Although the plant has adapted to diverse soil conditions such as low fertility, the correction of soil acidity and the addition of fertilizer are essential for highly productive plants. Thus, the response of the physic nut to different soil phosphorus levels (P) and arbuscular mycorrhizal fungi (AMF) inoculation must be characterized. Hence, the objective of the present study was to evaluate the response of physic nut seedlings to arbuscular mycorrhizal fungi (AMF) inoculation at different levels of soil P. Experiment was carried out in a greenhouse encompassing AMF treatments (inoculation with Gigaspora margarita or Glomus clarum, and the non inoculated controls), and phosphorus treatments (0, 25, 50, 100, 200 and 400 mg kg-1 added to soil). At low soil P levels, arbuscular mycorrhizal fungi inoculation had a significant positive effect on plant growth, shoot and root dry matter content, plant height, number of leaves, total leaf area, leaf area per leaf and the Dickson quality index. The root:shoot ratio and the leaf area ratio were also affected by mycorrhizal inoculation and the level of P addition. Physic nut plants exhibited high mycorrhizal dependency at soil P additions up to 50 mg kg-1.


2017 ◽  
Vol 12 (5) ◽  
pp. 159
Author(s):  
Marlina Puspita Sari ◽  
Bambang Hadisutrisno ◽  
Suryanti Suryanti

Arbuscular mycorrhizal fungi (AMF) is known to improve the growth of shallot (Allium cepa var. aggregatum) and strengthen the resistance of plants toward disease infection.  This research aimed to find out the roles of AMF in suppressing the development of purple blotch disease caused by  Alternaria sp. on shallot in Caturtunggal, Sleman, Yogyakarta.  Inoculation of AMF either on fertilization of N, P, K or without fertilization treatment resulted on higher plant height and number of leaves compared to those without AMF inoculation. The plant inoculated with AMF had lower purple blotch disease intensity and disease progression than control and fungicide treatment. The result showed that AMF, in addition to act as the bio-fertilizer, is a potential to be a biocontrol agent.


2019 ◽  
Vol 113 (2) ◽  
pp. 321
Author(s):  
Mazen IBRAHIM

The impact of indigenous arbuscular mycorrhizal fungi (AMF) on agronomic characteristics of sunflower (<em>Helianthus annuus</em> L.) was evaluated in a pot experiment. The indigenous AMF, including <em>Glomus intraradices, Glomus mosseae</em>, and <em>Glomus viscosum</em>, were isolated from an agricultural field in which cotton and sunflower plants were grown. The most abundant species (<em>G. viscosum</em>) was multiplied in a monospecific culture. Sunflower plants were inoculated with the mixture of three selected AMF species or solely with <em>G. viscosum</em>. The number of leaves, shoot length, head diameter, above ground biomass, and seeds mass were significantly higher in the plant inoculated with AMF mixture followed by individual inoculation with <em>G. viscosum</em> followed by the control. AMF mixture outperformed the <em>G. viscosumby</em> increasing mycorrhizal dependency and mycorrhizal inoculation effect of sunflower. The results indicate that AMF mixture could be considered as a good inoculum for improving growth and yield of sunflower in sustainable agriculture.


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Ziheng Song ◽  
Yinli Bi ◽  
Jian Zhang ◽  
Yunli Gong ◽  
Huihui Yang

Abstract It is urgent to restore the ecological function in open-pit mining areas on grassland in Eastern China. The open-pit mines have abundant of mining associated clay, which is desirable for using as a soil source for ecological restoration. The mining associated clay in Hulunbuir district, Inner Mongolia was selected and mixed with a sandy soil at a ratio of 1:1 (S_C soil). Also, effects of arbuscular mycorrhizal fungi (AMF) inoculation on soil functions were studied. The aboveground and underground biomass of maize in S_C soil was 1.49 and 2.41 times higher than that of clay soil, respectively. In the topsoil and S_C soil, the growth hormone (IAA) and cytokinin (CTK) levels of maize were higher than that of clay, while abscission acid (ABA) levels were lower. The inoculation with AMF could significantly improve the biomass of maize and enhance the stress resistance of plants. Through structural equation model (SEM) analyses, it was found that the soil type and AMF inoculation had the most direct impact on maize growth and biomass content. These finds extend our knowledge regarding a low-cost method for physical and biological improvement of mining associated clay, and to provide theoretical support for large-scale application in the future.


2019 ◽  
Vol 32 (2) ◽  
pp. 370-380
Author(s):  
EDUARDO MENDONÇA PINHEIRO ◽  
CAMILA PINHEIRO NOBRE ◽  
THAYANNA VIEIRA COSTA ◽  
ORLANDO CARLOS HUERTAS TAVARES ◽  
JOSÉ RIBAMAR GUSMÃO ARAUJO

ABSTRACT The use of beneficial microorganisms such as arbuscular mycorrhizal fungi (AMF) may favor both the growth phase and the stabilization of the seedlings after transplantation. The aim of this study was to evaluate the effect of inoculation of different AMF species on the development of Barbados cherry seedlings from herbaceous and semi-hardwood cuttings. Softwood and semi-hardwood cuttings, previously rooted, were planted in 500 ml tubes filled with Plantmax® substrate and inoculated with three species of mycorrhizal fungi (Gigaspora margarita - Gimarg, Claroideoglomus etunicatum - Claetun and Glomus clarum - Glclar) isolated and combined (Gimarg + Claetun, Gimarg + Glclar, Claetun + Glclar and Gimarg + Claetun + Glclar). The statistical design was completely randomized in factorial scheme 2 x 8 (two types of cuttings and eight types of inoculation, including control without AMF inoculation) with ten replications. The seedlings were kept in a greenhouse for 100 days and height was measured every 15 days to determine the absolute and relative growth rate (AGR and RGR). At the end of the experiment the seedlings were sacrificed and determined height, fresh and dry shoot mass and root and mycorrhizal colonization rate. The results indicate potential for production of Malpighia emarginata D.C. seedlings inoculated with AMF with tendency to reduce the time for transplanting. The Gimarg + Claetun combination promoted higher rates of absolute growth and height of seedlings from herbaceous cuttings. The species Glomus clarum, isolated or associated with C. etunicatum, promoted higher colonization rates in herbaceous and semi-hardwood seedlings, respectively.


2020 ◽  
Vol 110 (5) ◽  
pp. 999-1009 ◽  
Author(s):  
Golam Jalal Ahammed ◽  
Qi Mao ◽  
Yaru Yan ◽  
Meijuan Wu ◽  
Yaqi Wang ◽  
...  

Melatonin is a multifunctional molecule that confers tolerance to a number of biotic and abiotic stresses in plants. However, the role of melatonin in plant response to Fusarium oxysporum and the interaction with arbuscular mycorrhizal fungi (AMF) remain unclear. Here we show that exogenous melatonin application promoted the AMF colonization rate in cucumber roots, which potentially suppressed Fusarium wilt as evidenced by a decreased disease index and an increased control effect. Leaf gas exchange analysis revealed that Fusarium inoculation significantly decreased the net photosynthetic rate (Pn), stomatal conductance (Gs), intercellular CO2 concentrations (Ci), and transpiration rate (Tr). Intriguingly, either melatonin application or AMF inoculation significantly increased the Pn, Gs, Tr, and dry biomass, and their combined treatment showed a more profound effect under Fusarium stress. Further analysis showed that Fusarium induced oxidative stress as evidenced by increased lipid peroxidation and electrolyte leakage. Conversely, either melatonin or AMF drastically attenuated the levels of malondialdehyde, H2O2, and electrolyte leakage in Fusarium-inoculated plants, and their combined treatment caused a further decrease. Fusarium inoculation decreased the activity and transcripts of superoxide dismutase and ascorbate peroxidase, and the content of glutathione and proline. Besides, the activity and transcripts of peroxidase and catalase, the content of phenols and flavonoids increased after Fusarium infection. Importantly, melatonin and/or AMF significantly increased those parameters with the greatest effect with their combined treatment under Fusarium stress. Our results suggest that a positive collaboration between melatonin and AMF enhances resistance to Fusarium wilt in cucumber plants.


2005 ◽  
Vol 85 (1) ◽  
pp. 31-40 ◽  
Author(s):  
C. Plenchette ◽  
C. Clermont-Dauphin ◽  
J. M. Meynard ◽  
J. A. Fortin

Market globalization, demographic pressure, and environmental degradation have led us to reconsider many of our current agricultural systems. The heavy use of chemical inputs, including fertilizers and pesticides, has resulted in pollution, decreased biodiversity in intensively-farmed regions, degradation of fragile agro-ecosystems, and prohibitive costs for many farmers. Low input sustainable cropping systems should replace conventional agriculture, but this requires a more comprehensive understanding of the biological interactions within agro-ecosystems. Mycorrhizal fungi appear to be the most important telluric organisms to consider. Mycorrhizae, which result from a symbiosis between these fungi and plant roots, are directly involved in plant mineral nutrition, the control of plant pathogens, and drought tolerance. Most horticultural and crop plants are symbiotic with arbuscular mycorrhizal fungi. Mycorrhizal literature is abundant, showing that stimulation of plant growth can be mainly attributed to improved phosphorous nutrition. Although the mycorrhizal potential of its symbiosis to improve crop production is widely recognized, it is not implemented in agricultural systems. There is an urgent need to improve and widely apply analytical methods to evaluate characteristics such as, relative field mycorrhizal dependency, soil mycorrhizal infectivity, and mycorrhizal receptivity of soil. Decreased use of fertilizers, pesticides, and tillage will favour arbuscular mycorrhizal fungi. However, shifting from one system to a more sustainable one is not easy since all components of the cropping system are closely linked. Different cases, from actual agricultural practices in different countries, are analyzed to highlight situations in which mycorrhizae might or might not play a role in developing more sustainable agriculture. Key words: Cropping systems, mycorrhizae, sustainability, technical itineraries, rotation


2021 ◽  
Vol 51 ◽  
pp. e1299
Author(s):  
Azareel Angulo-Castro ◽  
Ronald Ferrera-Cerrato ◽  
Alejandro Alarcón ◽  
Juan José Almaraz-Suárez ◽  
Julián Delgadillo-Martínez ◽  
...  

Background: Plant growth promoting rhizobacteria (PGPR) and arbuscular mycorrhizal fungi (AMF) are an alternative for sustainable management of pepper crops. Objective: To investigate the beneficial effects of PGPR and AMF inoculation on the growth of bell pepper plants. Methods: Two PGPR strains were used (Pseudomonas tolaasii P61 and Bacillus pumilus R44) as well as their mixture, and an uninoculated control. In addition, bacterial treatments were combined with an AMF-consortium (Funneliformis aff. geosporum and Claroideoglomus sp.). A 4×2 factorial experiment [four levels for the bacterial inoculation and two levels of AMF-inoculation (non-AMF and AMF)] was performed with eight treatments, at greenhouse conditions for 80 days after inoculation. AMF inoculation was done at sowing and PGPR after 15 days of seedling emergence. Results and Conclusions: Uninoculated control showed lower growth responses than plants inoculated with PGPR and AMF, alone or in combination. Overall, inoculation of the strain P61 or the combination of R44+AMF increased plant growth. AMF improved the photochemical efficiency of PSII in comparison to either control plants or plants inoculated with R44 or with the bacterial mix. Both PGPR and AMF improved growth and vigor of bell pepper plants.


2021 ◽  
Author(s):  
Ke Chen ◽  
David Kleijn ◽  
Jeroen Scheper ◽  
Thijs P.M. Fijen

AbstractManaging ecosystem services may reduce the dependence of modern agriculture on external inputs and increase the sustainability of agricultural production. Insect pollinators and arbuscular mycorrhizal fungi (AMF) provide vital ecosystem services for crop production, but it has not been tested whether their effects on crop yield interact and how their effects are influenced by nutrient availability. Here we use potted raspberry (Rubus idaeus L.) plants in a full-factorial randomized block design to assess the interacting effects of insect pollination, AMF inoculation and four levels of fertilizer application. AMF inoculation increased the per-plant flower number by 33% and fruit number by 35%, independently from insect pollination and fertilizer application. Single berry weight furthermore increased more strongly with fertilizer application rates in AMF inoculated plants than in non-inoculated plants. As a consequence, AMF inoculation boosted raspberry yield by 43% compared to non-inoculated plants. AMF inoculation increased pollinator visitation rate under intermediate fertilizer levels, suggesting additional indirect effects of AMF on yield. Fruit yield of pollinated plants increased more strongly with fertilizer application rate than the yield of plants from which pollinators had been excluded. At maximum nutrient availability, the combined benefits of both ecosystem services resulted in a 135% higher yield than that of fertilizer-only treatments. Our results suggest that benefits of ecosystem services on yield can be additive or synergistic to the effects of conventional management practices. Intensive, high-input farming systems that do not consider the potential adverse effects of management on ecosystem service providing species may risk becoming limited by delivery of ecosystem services. Pro-actively managing ecosystem services, on the other hand, has the potential to increase crop yield at the same level of external inputs.


Sign in / Sign up

Export Citation Format

Share Document