scholarly journals Wetting and Bonding Behavior of SUS 304 Metal and Forsterite Ceramic with a PbO-Bi<sub>2</sub>O<sub>3</sub>-B<sub>2</sub>O<sub>3</sub>-ZnO Glass Frit

Author(s):  
Hang Choi ◽  
Tadachika Nakayama ◽  
Jin Sam Choi
Keyword(s):  
2021 ◽  
Vol 11 (10) ◽  
pp. 4603
Author(s):  
Soyoung Kim ◽  
Karam Han ◽  
Seonhoon Kim ◽  
Linganna Kadathala ◽  
Jinhyeok Kim ◽  
...  

Today, the most common way of laser sealing is using a glass frit paste and screen printer. Laser sealing using glass frit paste has some problems, such as pores, nonuniform height, imperfect hermetic sealing, etc. In order to overcome these problems, sealing using fiber types of sealant is attractive for packaging devices. In this work, (70-x)V2O5-5ZnO-22BaO-3B2O3-xM(PO3)n glasses (mol%) incorporated with xM(PO3)n concentration (where M = Mg, Al, n = 2, 3, respectively) were fabricated and their thermal, thermomechanical, and structural properties were investigated. Most importantly, for this type of sealing, the glass should have a thermal stability (ΔT) of ≥80 °C and the coefficient of thermal expansion (CTE) between the glass and panel should be 1.0 ppm/°C. The highest thermal stability ΔT of the order of 93.2 °C and 112.9 °C was obtained for the 15 mol% of Mg(PO3)2 and Al(PO3)3 doped glasses, respectively. This reveals that the bond strength and connectivity is more strongly improved by trivalent Al(PO3)3. The CTE of a (70-x)V2O5-5ZnO-22BaO-3B2O3-xAl(PO3)3 glass system (mol%) (where x = 5–15, mol%) is in the range of 9.5–15.5 (×10−6/K), which is comparable with the CTE (9–10 (×10−6/K)) of commercial DSSC glass panels. Based on the results, the studied glass systems are considered to be suitable for laser sealing using fiber types of sealant.


Author(s):  
Bo Nan ◽  
Przemysław Gołębiewski ◽  
Ryszard Buczyński ◽  
F.J. Galindo Rosales ◽  
José Ferreira

In this paper, we present a preliminary study and conceptual idea concerning 3D printing water-sensitive glass by exemplifying with a borosilicate glass with high alkali and alkaline oxide contents using direct ink writing. The investigated material was prepared in the form of a glass frit, which was further ground in order to obtain a fine powder of desired particle size distribution. In a following step, inks were prepared by mixing the fine glass powder with Pluoronic F-127 hydrogel. The acquired pastes were rheologically characterized and printed using a Robocasting device. DSC experiments were performed for base materials and the obtained green bodies. After sintering, SEM and XRD analyses were carried out in order to examine microstructure and the eventual presence of crystalline phase inclusions. Results confirmed that obtained inks exhibit stable rheological properties despite the propensity of glass to undergo hydrolysis and could be adjusted to desirable values for 3D printing. No additional phase was observed, supporting the suitability of the designed technology for the production of water sensitive glass inks. SEM micrographs of the sintered samples revealed the presence of closed porosity, which may be the main reason of light scattering.


2010 ◽  
Vol 2010 (1) ◽  
pp. 000752-000759
Author(s):  
Xudong Chen ◽  
W. Kinzy Jones

Glass frit is a major component of thick film resistor (TFR) for the production of hybrid circuits. More than thirty commercial lead-free glass frits with different compositions have been evaluated for developing a lead-free thick film resistor that is compatible with typical industry thick film processing and has comparable electrical properties as the lead bearing counterpart. Two glass compositions were selected out of 33 candidates for preparation of RuO2 based TFR inks, which were screen printed on alumina substrates and fired at 850°C. The preliminary results of these resistors showed that the sheet resistance spanned from 400 ohms per square (Ω/□) to 0.4 mega-ohms per square (MΩ/□) with 5–15% RuO2 and the hot temperature coefficient of resistance (HTCR) fell in a range of ±350ppm/°C.


2015 ◽  
Vol 2015 (1) ◽  
pp. 000425-000429 ◽  
Author(s):  
Richard C. Garcia

Thick film technology is based on a paste containing glass frit that is screen printed and fused at high temperature onto various ceramic substrate materials. Softening or melting this glassy frit forms a cohesive layer, binding the conductors, resistors or dielectric materials to the ceramic. The dynamics of the printing process and inherent number of associated variables negatively impact the uniformity of the fired surface on a micro scale, which can lead to variation in the wire bonding process. Other processes associated with thick film substrate fabrication can cause problems as well. Laser trimming is used to adjust the value of printed resistors to meet design requirements. This ablation of printed resistors by high–powered pulse laser leaves a halo of debris and contamination on the ceramic substrate, which can cause wire bond lifting. In this paper, we will demonstrate a way to eliminate these problems using a bonding technique called Stand- Off Stitch bonding (SOS). This wire bond type is formed by first placing a ball bump at the second bond, or stitch, location on the thick film substrate, and then forming a normal wire that terminates on that bump. This places two ball bumps at each end of the wire, similar to a security bond. However, the ball bump is located under the stitch instead of on top. This SOS wire bond technique is compliant with the MIL-STD- 883 for a compound bond, where one bond is placed on top of another bond. With the gold bump placed on top of the gold thick film pad, the bump acts as a foundation for the stitch bond, providing a wider contact area and clean bond surface to secure a reliable stitch bond interconnect. With this change, an abrupt improvement to the resultant destruct wire pull tests can be achieved, promoting a robust, controlled process for wire bond interconnects.


Sign in / Sign up

Export Citation Format

Share Document