scholarly journals Safety Assessment of Rigid Frame Cantilever Construction Based on Matter-Element and Extension

2021 ◽  
Vol 9 (2) ◽  
pp. 37
Author(s):  
Zhu Qinghua ◽  
Tian Zhongchu
2010 ◽  
Vol 163-167 ◽  
pp. 2369-2375 ◽  
Author(s):  
Ming Yuan ◽  
Dong Huang Yan

The stress state of finished bridge and service stage is influenced by various closure schemes in cantilever construction of multi-span prestressed concrete box-girder bridge. Two typical bridges—multi-span prestressed concrete continuous rigid frame bridge and girder bridge are investigated, The stress state in different closure schemes are analyzed using finite element(FE) analysis. Meanwhile, compared the healthy monitoring data, it has been found that taking the closure sequence from side span to middle span in cantilever construction of multi-span prestressed concrete box-girder bridge can lower stress of girder and pier in finished bridge stage, as well as reducing deformation of girder in service stage. Hence, the closure sequence from side span to middle span is more suitable for cantilever construction of multi-span prestressed concrete box-girder bridge.


2013 ◽  
Vol 353-356 ◽  
pp. 2033-2038
Author(s):  
Qi Wen Jin ◽  
Tong Ning Wang ◽  
Yi Li Sun ◽  
Zhao Tong Hu

Based on the theory of cantilever construction, combined with a three cross continuous rigid frame bridge, choosing the biggest cantilever stage, side span cross fold stages, middle span cross fold stage and complete bridge stage as the research object. Considering the pillar-soil function, making the seismic elastic-plastic response calculation. Getting the result that, during the earthquake, pillar-soil function can improve the flexible extension ability of the bridge structure so as to get better resistance seismic capacity. Internal force of the construction stage gradually reduces along the bottom pier, the middle pier and the top pier. Along the bridge, the maximum bending moment appears at the biggest cantilever stage. Horizontal to the bridge, the maximum bending moment appears at the side span cross fold stages. Plastic areas develops quickly during pier bottom and pile top, the crack is obvious; Plastic hinge first appears in the pile foundation, consuming earthquake energy through its plastic deformation so as to reduce the earthquake impact of pier. We should try to avoid plasticitys appearing in the pile foundation during the design, which will provide convenience for the follow-up maintenance.


Author(s):  
Ying hua Li ◽  
Ke sheng Peng ◽  
Lu rong Cai ◽  
Jun yong He

Abstract: In general, the material properties, loads, resistance of the prestressed concrete continuous rigid frame bridge in different construction stages are time-varying. So, it is essential to monitor the internal force state when the bridge is in construction. Among them, how to assess the safety is one of the challenges. As the continuous monitoring over a long-term period can increase the reliability of the assessment, so, based on a large number of monitored strain data collected from the structural health monitoring system (SHMS) during construction, a calculation method of the punctiform time-varying reliability is proposed in this paper to evaluate the stress state of this type bridge in cantilever construction stage by using the basic reliability theory. At the same time, the optimal stress distribution function in the bridge mid-span base plate is determined when the bridge is closed. This method can provide basis and direction for the internal force control of this type bridge in construction process. So, it can reduce the bridge safety and quality accidents in construction stages.


2010 ◽  
Vol 163-167 ◽  
pp. 1364-1368
Author(s):  
Rong Xia Wang ◽  
Hong Jiang Li ◽  
Ke Xi Jin

Over-deflection of beam in continuous rigid frame bridge has become an serious problem in recent years. The reason is complex. Some reseachers think that the bad quality of sectional joints in cantilever construction will cause additional shearing deformation and affect the beam deflection, this idea need to be further studied. In the paper, two three-dimensional models are built up based on a factual bridge, the simulation method of joints is studied, the influence of shearing deformation caused by sectional joints on beam deflection in construction is analysed. The study shows that shearing deformation of sectional joints has influence on deflection in cantilever construction, and it shouldn’t be ignored. This may be important to improve the loading property and renovate the design concept of this kind of bridge.


2018 ◽  
Vol 35 (4) ◽  
pp. 4027-4035 ◽  
Author(s):  
Feng Hu ◽  
Pingming Huang ◽  
Fenghui Dong ◽  
A. Blanchet

2014 ◽  
Vol 8 (1) ◽  
pp. 416-419
Author(s):  
Lifeng Wang ◽  
Hongwei Jiang ◽  
Dongpo He

Deflection control is the crucial procedure in construction control of cantilever prestressed concrete continuous girder bridge. This paper summarizes the advantages of Grey theory’s poor information processing and abilities of Neural Network’s self-learning and adaption, and the combinational algorithm of grey Neural Network is applied to the prestressed concrete bridge cantilever construction control process. Firstly, GM (1, 1) model and BP artificial Neural Network algorithm to predict the elevation of construction process are introduced respectively. In addition, the elevation prediction model of rigid-framed-continuous girder bridge is established. By practicing in the construction control project of LongHua Bridge, the method is testified to be feasible. The results indicate that, the combinational algorithm of Gray Neural Network to predict the construction elevation has higher reliability and accuracy which can be an effective tool of construction control for the same type bridges.


2021 ◽  
Vol 237 ◽  
pp. 03020
Author(s):  
Yang Liu ◽  
Chunmo Zheng ◽  
Huaiqiang Ba ◽  
Guangli Xu ◽  
Chao Li ◽  
...  

In order to study the influence of prestress on cantilever deflection and construction linear control of continuous rigid frame bridge in construction stage, this paper introduces the significance of continuous rigid frame bridge’s linear control, the calculation principle and deflection influence analysis of vertical formwork elevation in cantilever construction. According to a specific continuous rigid frame bridge, this paper use the finite element software to simulate and calculate the deflection of prestress to the cantilever construction of continuous rigid frame bridge. The influence of friction coefficient between prestressed steel bundle and bellows and prestress loss on cantilever deflection and construction line control of continuous rigid frame bridge is also analyzed, furtherly brings out the solution to deal with the problems due to the change of prestress.


2013 ◽  
Vol 791-793 ◽  
pp. 354-357
Author(s):  
Ya Xun Yang ◽  
Zhi Kui Yang ◽  
Chao Qiao

Cantilever construction has been commonly used in construction of continuous rigid frame bridge and construction control plays an important role in ensuring the line-type and the forced state. Because of long construction period, it tends to construct across the winter possibly. Considering that the impact of winter intermission on construction control of pre-camber is a problem which the constructors and control staff must pay attention to, this paper takes the impact of winter intermission on construction stage into consideration. The research has guiding significance for the construction of the similar bridge to a certain degree.


2013 ◽  
Vol 361-363 ◽  
pp. 1380-1383
Author(s):  
Ning Zhao ◽  
Bing Zhu ◽  
Wen Jia Suo ◽  
Liang Du ◽  
Fan Wang

Combining with specific engineering example, we used the finite element calculation software and analyzed the lateral deformation and stress of variable cross-section curved continuous rigid frame bridge during cantilever construction. Their some change rules are obtained. They accumulate during cantilever construction, and system transformation influences them greatly. We also put forward some understanding and advice about design and construction.


Sign in / Sign up

Export Citation Format

Share Document