In VitroTransport of Active α1-Antitrypsin to the Apical Surface of Epithelia by Targeting the Polymeric Immunoglobulin Receptor

1999 ◽  
Vol 21 (2) ◽  
pp. 246-252 ◽  
Author(s):  
Elizabeth A. Eckman ◽  
William D. Mallender ◽  
Tivadar Szegletes ◽  
Catherine L. Silski ◽  
John R. Schreiber ◽  
...  

1998 ◽  
Vol 274 (5) ◽  
pp. F966-F977 ◽  
Author(s):  
James C. Rice ◽  
Jeff S. Spence ◽  
Judit Megyesi ◽  
Robert L. Safirstein ◽  
Randall M. Goldblum

The polymeric immunoglobulin receptor (pIgR) transports polymeric immunoglobulins (IgA) from the basolateral to the apical surface of epithelial cells. At the apical surface, its amino-terminal domain, termed secretory component (SC), is proteolytically cleaved and released either unbound (free SC) or bound to IgA. We examined the effects of changes in water balance and vasopressin on the production and secretion of the pIgR in the rat kidney in vivo. Water deprivation induced a 2.7-fold increase in the pIgR mRNA and a 2.2-fold increase in intracellular pIgR protein compared with water-loaded animals. Physiological doses of desmopressin reproduced the effects of water deprivation on mRNA and intracellular protein levels, suggesting that pIgR expression may be regulated by a vasopressin-coupled mechanism. Secretion of free SC and secretory IgA in the urine, however, correlated directly with water intake and urine flow. These results suggest that hydration status and vasopressin may affect the mucosal immunity of the kidney by regulating at different steps the epithelial cell production and secretion of the polymeric immunoglobulin transporter/secretory component.



1998 ◽  
Vol 111 (9) ◽  
pp. 1197-1206
Author(s):  
T. Su ◽  
K.K. Stanley

We have transfected a polarised endothelial cell line, ECV 304, and an epithelial cell line, MDCK, with a well characterised epithelial protein, the rat polymeric immunoglobulin receptor (pIgR), in order to study the protein sorting and transcytosis in endothelial cells. The expressed protein was normally processed and the steady state distribution between apical and basolateral surfaces was similar in both cell types. MDCK cells, however, showed a marked polarity in the delivery of newly synthesised pIgR to the cell surface, and in the release of secretory component. 88% of newly synthesised pIgR in MDCK cells was first delivered to the basolateral surface and 99% of secretory component was released from the apical surface. In contrast the basolateral targeting signal of pIgR was only partially recognised in endothelial cells, with 63% of the newly synthesised pIgR being first delivered to the basolateral surface. At steady state only 43% of the pIgR was found on the basolateral membrane. The direction of dimeric IgA transcytosis in endothelial cells was from apical to basolateral surfaces, opposite to that in MDCK cells. These data suggest that endothelial cells poorly recognise the targeting signals of proteins from epithelial cells, and that the direction of transcytosis is linked to the biological role of the cells.



1986 ◽  
Vol 102 (3) ◽  
pp. 911-919 ◽  
Author(s):  
D L Deitcher ◽  
M R Neutra ◽  
K E Mostov

The polymeric immunoglobulin receptor, a transmembrane protein, is made by a variety of polarized epithelial cells. After synthesis, the receptor is sent to the basolateral surface where it binds polymeric IgA and IgM. The receptor-ligand complex is endocytosed, transported across the cell in vesicles, and re-exocytosed at the apical surface. At some point the receptor is proteolytically cleaved so that its extracellular ligand binding portion (known as secretory component) is severed from the membrane and released together with the polymeric immunoglobulin at the apical surface. We have used a cDNA clone coding for the rabbit receptor and a retroviral expression system to express the receptor in a nonpolarized mouse fibroblast cell line, psi 2, that normally does not synthesize the receptor. The receptor is glycosylated and sent to the cell surface. The cell cleaves the receptor to a group of polypeptides that are released into the medium and co-migrate with authentic rabbit secretory component. Cleavage and release of secretory component do not depend on the presence of ligand. The cells express on their surface 9,600 binding sites for the ligand, dimeric IgA. The ligand can be rapidly endocytosed and then re-exocytosed, all within approximately 10 min. Very little ligand is degraded. At least some of the ligand that is released from the cells is bound to secretory component. The results presented indicate that we have established a powerful new system for analyzing the complex steps in the transport of poly-Ig and the general problem of membrane protein sorting.



1994 ◽  
Vol 127 (6) ◽  
pp. 1603-1616 ◽  
Author(s):  
F Bonzelius ◽  
G A Herman ◽  
M H Cardone ◽  
K E Mostov ◽  
R B Kelly

We have expressed in neuroendocrine PC12 cells the polymeric immunoglobulin receptor (pIgR), which is normally targeted from the basolateral to the apical surface of epithelial cells. In the presence of nerve growth factor, PC12 cells extend neurites which contain synaptic vesicle-like structures and regulated secretory granules. By immunofluorescence microscopy, pIgR, like the synaptic vesicle protein synaptophysin, accumulates in both the cell body and the neurites. On the other hand, the transferrin receptor, which normally recycles at the basolateral surface in epithelial cells, and the cation-independent mannose 6-phosphate receptor, a marker of late endosomes, are largely restricted to the cell body. pIgR internalizes ligand into endosomes within the cell body and the neurites, while uptake of ligand by the low density lipoprotein receptor occurs primarily into endosomes within the cell body. We conclude that transport of membrane proteins to PC12 neurites as well as to specialized endosomes within these processes is selective and appears to be governed by similar mechanisms that dictate sorting in epithelial cells. Additionally, two types of endosomes can be identified in polarized PC12 cells by the differential uptake of ligand, a housekeeping type in the cell bodies and a specialized endosome in the neurites. Recent findings suggest that specialized axonal endosomes in neurons are likely to give rise to synaptic vesicles (Mundigl, O., M. Matteoli, L. Daniell, A. Thomas-Reetz, A. Metcalf, R. Jahn, and P. De Camilli. 1993. J. Cell Biol. 122:1207-1221). Although pIgR reaches the specialized endosomes in the neurites of PC12 cells, we find by subcellular fractionation that under a variety of conditions it is efficiently excluded from synaptic vesicle-like structures as well as from secretory granules.



1996 ◽  
Vol 109 (8) ◽  
pp. 2133-2139
Author(s):  
V. Reich ◽  
K. Mostov ◽  
B. Aroeti

Basolateral sorting of the polymeric immunoglobulin receptor (pIgR) expressed in Madin-Darby canine kidney (MDCK) cells is mediated by a 17-residue sorting signal that resides in the cytoplasmic domain. We have recently analyzed the sequence requirements of the signal by alanine scanning mutagenesis. We found that basolateral sorting is mediated primarily by three amino acids: H656, R657 and V660. Individual mutations of each of these residues to Ala caused a substantial decrease in basolateral sorting and a corresponding increase in targeting to the apical surface. Structural analysis of 17-residue peptides corresponding to the signal revealed that V660 is in a beta-turn (probably type I) secondary structure, and its mutation to Ala destabilized the turn. H656 and R657 were not part of the turn and substitution of Arg657 to Ala had no effect on the turn stability. These results suggested that the signal is comprised of two structurally distinct domains: a critical V660 in the context of the beta-turn and an additional two residues (H656 and R657) that are not in the turn and probably are unimportant for its stability. Here we provide evidence suggesting that the two domains are distinguishable not only by their structure but also by their function. Basolateral targeting of pIgR mutants bearing Ala mutations at either 656 or 657 was not affected by treatment with brefeldin A (BFA), while basolateral targeting of pIgR containing an Ala substitution at position 660 was markedly and uniquely stimulated by BFA. Compared to single Ala substitutions, simultaneous mutations of H656 and R657 to Ala caused an additional minor effect on basolateral and apical sorting, whereas double mutations of V660 and either H656 or R657 resulted in a maximal decrease in basolateral targeting and corresponding increase in apical targeting. These results suggest the existence of two domains in the signal. When both domains are destroyed, basolateral targeting is maximally inhibited. The results also imply that V660 mediates basolateral sorting by a different mechanism from H656 and R657. We suggest that V660 and perhaps more generally the beta-turn may interact with BFA-sensitive adaptor complexes.



1989 ◽  
Vol 109 (2) ◽  
pp. 475-486 ◽  
Author(s):  
P P Breitfeld ◽  
J M Harris ◽  
K E Mostov

The polymeric immunoglobulin receptor (pIg-R) is responsible for the receptor-mediated transcytosis of polymeric immunoglobulins (IgA and IgM) across various epithelia. We have expressed the cDNA for the pIg-R in Madin-Darby canine kidney (MDCK) cells and found that this system mimics that found in vivo (Mostov, K. E., and D. L. Deitcher. 1986. Cell. 46:613-621). We have now investigated the postendocytotic pathway of the ligand for the pIg-R. After a 5-min internalization at the basolateral surface, approximately 45% of internalized ligand recycles to the basolateral medium and 30% is transcytosed to the apical medium. We have also examined why transcytosis of ligand is unidirectional, going only from basolateral to apical, but not from apical to basolateral. Several factors could explain this, such as proteolytic cleavage of the pIg-R at the apical surface, decreased apical endocytosis of ligand, or an intracellular sorting event. In this report, we show that the protease inhibitor, leupeptin, inhibits the cleavage of the pIg-R but does not alter the unidirectionality of transcytosis. In addition, we demonstrate that there is a significant amount of apical endocytosis of ligand (70% of that observed basolaterally). Finally, we demonstrate that apically endocytosed ligand can return only to the apical surface. Thus, once ligand reaches the apical surface, it is "trapped" and cannot return to the basolateral surface. We propose that the unidirectionality of transcytosis is the result of intracellular sorting, and that this results from a signal(s) present on the pIg-R.



2020 ◽  
Vol 35 (Supplement_3) ◽  
Author(s):  
Tianlin He ◽  
Justyna Siwy ◽  
Jochen Metzger ◽  
William Mullen ◽  
Harald Mischak ◽  
...  

Abstract Background and Aims The polymeric immunoglobulin receptor (pIgR) which transports immunoglobulins from the basolateral to the apical surface of epithelial cells was recently shown to be associated with kidney dysfunction. The immune defense is initiated at the apical surface where the N-terminal domain of pIgR, termed secretory component (SC), is proteolytically cleaved and released either unbound (free SC) or bound to immunoglobulins. The aim of our study was to show the association of pIgR peptides with the cardio-renal syndrome in a large cohort and to get information on how the SC will be released. Method We investigated urinary peptides of 2707 individuals available in the Human Urine Proteome Database using capillary electrophoresis coupled to mass spectrometry. Results The mean abundance of 23 different pIgR peptides correlates negatively with the estimated glomerular filtration rate (eGFR, r=-0.314, p<0.0001). Furthermore, pIgR peptides are significantly increased in coronary artery disease after adjustment for eGFR. We further predicted the proteases involved in urinary peptide generation using the Proteasix tool. Peptide cleavage site analysis suggests that several, and not one, proteases are involved in the generation of the SC. Conclusion In this large cohort, we could demonstrate that pIgR is associated with the cardio-renal syndrome and provide more detailed insights on how pIgR can be potentially cleaved to release the SC.



1990 ◽  
Vol 111 (6) ◽  
pp. 2365-2373 ◽  
Author(s):  
P P Breitfeld ◽  
W C McKinnon ◽  
K E Mostov

A polarized cell, to maintain distinct basolateral and apical membrane domains, must tightly regulate vesicular traffic terminating at either membrane domain. In this study we have examined the extent to which microtubules regulate such traffic in polarized cells. Using the polymeric immunoglobulin receptor expressed in polarized MDCK cells, we have examined the effects of nocodazole, a microtubule-disrupting agent, on three pathways that deliver proteins to the apical surface and two pathways that deliver proteins to the basolateral surface. The biosynthetic and transcytotic pathways to the apical surface are dramatically altered by nocodazole in that a portion of the protein traffic on each of these two pathways is misdirected to the basolateral surface. The apical recycling pathway is slowed in the presence of nocodazole but targeting is not disrupted. In contrast, the biosynthetic and recycling pathways to the basolateral surface are less affected by nocodazole and therefore appear to be more resistant to microtubule disruption.



2002 ◽  
Vol 159 (1) ◽  
pp. 37-44 ◽  
Author(s):  
María C. de Marco ◽  
Fernando Martín-Belmonte ◽  
Leonor Kremer ◽  
Juan P. Albar ◽  
Isabel Correas ◽  
...  

Transcytosis is used alone (e.g., hepatoma HepG2 cells) or in combination with a direct pathway from the Golgi (e.g., epithelial MDCK cells) as an indirect route for targeting proteins to the apical surface. The raft-associated MAL protein is an essential element of the machinery for the direct route in MDCK cells. Herein, we present the functional characterization of MAL2, a member of the MAL protein family, in polarized HepG2 cells. MAL2 resided selectively in rafts and is predominantly distributed in a compartment localized beneath the subapical F-actin cytoskeleton. MAL2 greatly colocalized in subapical endosome structures with transcytosing molecules en route to the apical surface. Depletion of endogenous MAL2 drastically blocked transcytotic transport of exogenous polymeric immunoglobulin receptor and endogenous glycosylphosphatidylinositol-anchored protein CD59 to the apical membrane. MAL2 depletion did not affect the internalization of these molecules but produced their accumulation in perinuclear endosome elements that were accessible to transferrin. Normal transcytosis persisted in cells that expressed exogenous MAL2 designed to resist the depletion treatment. MAL2 is therefore essential for transcytosis in HepG2 cells.



1987 ◽  
Vol 105 (5) ◽  
pp. 2031-2036 ◽  
Author(s):  
K E Mostov ◽  
P Breitfeld ◽  
J M Harris

The polymeric immunoglobulin receptor is expressed in a variety of polarized epithelial cells. Newly made receptor travels first to the basolateral surface. The receptor is then endocytosed, transported across the cell in vesicles, and exocytosed at the apical surface. We have now deleted the membrane spanning and cytoplasmic portions of the receptor by site-directed mutagenesis, thus converting the receptor to a secretory protein. When expressed in polarized Madin-Darby canine kidney (MDCK) cells the truncated protein is secreted at both surfaces, with a ratio of apical-to-basal secretion of 3.4. In contrast, when the exogenous secretory protein chicken lysozyme is expressed in these cells, it is released at both sides with a ratio of apical-to-basal secretion of 0.43. (Koder-Koch, C., R. Bravo, S. Fuller, D. Cutler, and H. Garoff, 1985, J. Cell Biol., 43:297-306). Lysozyme is thought to lack a signal that targets it to one surface or the other, and so its secretion may represent a default, bulk flow pathway to both surfaces. When compared with lysozyme, the truncated polymeric immunoglobulin receptor is preferentially secreted apically by a factor of 3.4:0.43 or 7.8. We suggest that the lumenal portion of the polymeric immunoglobulin receptor contains a signal that targets it to the apical surface.



Sign in / Sign up

Export Citation Format

Share Document