Study on the Influence of L-AD (Liquid Anaerobic Digestion) and SS-AD (Solid-State Anaerobic Digestion) Methods to Biogas Production from Water Hyacinth (Eichhornia crassipes)

2018 ◽  
Vol 24 (12) ◽  
pp. 9835-9837
Author(s):  
Syafrudin ◽  
Winardi Dwi Nugraha ◽  
Fabiola Natalyn ◽  
Hashfi Hawali Abdul Matin ◽  
Budiyono
Informatics ◽  
2021 ◽  
Vol 8 (2) ◽  
pp. 38
Author(s):  
Aman Basu ◽  
Amit Kumar Hazra ◽  
Shibani Chaudhury ◽  
Andrew B. Ross ◽  
Srinivasan Balachandran

This study aims to present a systematic data-driven bibliometric analysis of the water hyacinth (Eichhornia crassipes) infestation problem around the globe. As many solutions are being proposed in academia for its management, mitigation, and utilization, it requires investigation through a systematic scrutinizing lens. In this study, literature records from 1977 to June 2020 concerning research on water hyacinth are taken from Scopus for text analysis. Trends in the publication of different article types, dynamics of publication, clustering, correlation, and co-authoring patterns between different countries are observed. The cluster analysis indicated four clusters viz. (i) ecological works related to species, (ii) pollutant removal process and methods, (iii) utilization of biofuels for biogas production, and (iv) modelling works. It is clear from the networking analysis that most of the publications regarding water hyacinth are from India, followed by China and the United States. Sentiment analysis with the AFINN lexicon showed that the negative sentiment towards the aquatic weed has intensified over time. An exploratory analysis was performed using a bigram network plot, depicting and outlining different important domains of water hyacinth research. Water hyacinth research has passed the pioneering phase and is now at the end of a steady growth phase or at the beginning of an acceleration phase. In this article, an overview is given for the entirety of water hyacinth research, with an indication of future trends and possibilities.


2019 ◽  
Vol 293 ◽  
pp. 122066 ◽  
Author(s):  
Yang Liu ◽  
Junnan Fang ◽  
Xinyu Tong ◽  
ChenChen Huan ◽  
Gaosheng Ji ◽  
...  

2018 ◽  
Vol 24 (12) ◽  
pp. 9875-9876
Author(s):  
Winardi Dwi Nugraha ◽  
Syafrudin ◽  
Windy Surya Permana ◽  
Hashfi Hawali Abdul Matin ◽  
Budiyono

2018 ◽  
Vol 31 ◽  
pp. 02007 ◽  
Author(s):  
Hashfi Hawali Abdul Matin ◽  
Hadiyanto

An effort to obtain alternative energy is still interesting subject to be studied, especially production of biogas from agriculture waste. This paper was an overview of the latest development of biogas researches from rice husk waste by Solid State Anaerobic Digestion (SSAD). The main obstacle of biogas production from rice husk waste was the lignin content which is very difficult degraded by microbes. Various pretreatments have been conducted, either physically, chemically as well as biologically. The SSAD method was an attractive option because of the low water content of rice husk waste. The biogas yield by SSAD method gave more attractive result compared to Liquid Anaerobic Digestion (LAD) method. Various studies were still conducted in batch mode laboratory scale and also has not found optimum operating conditions. Research on a larger scale such as bench and pilot scale with continuous systems will be an increase trend in the future research.


2011 ◽  
Vol 697-698 ◽  
pp. 326-330 ◽  
Author(s):  
S.X. Zhou ◽  
Y.P. Dong ◽  
Y.L. Zhang

Microbial pretreatment was applied to enhance biogas production from corn stover through solid-state anaerobic digestion, but the price of microbial strains is high. The objective of this study was to find the effects on biogas production by the naturally microbial pretreatment method. The highest cumulative biogas yield for 60-day solid-state anaerobic digestion was obtained in B group (the pretreated corn straws with cow dung), which was 19.6% higher than that of the untreated samples. The D group(the pretreated corn straws with the sludge)cumulative biogas yield for 60-day solid-state anaerobic digestion was obtained, which was 18.87% higher than that of the untreted samples. The biogas of D group increased to the range of 55%~60% methane content, while B group with the range of 75%~80%.The results indicated that the pretreated corn straws mixing cow manure can improve both the biogas production yield and the content of methane in CH4。


2007 ◽  
Vol 42 (7) ◽  
pp. 925-932 ◽  
Author(s):  
Mahesh W. Jayaweera ◽  
Jayakodi A. T. Dilhani ◽  
Ranil K. A. Kularatne ◽  
Suren L. J. Wijeyekoon

2020 ◽  
Vol 10 (1) ◽  
pp. 27-35
Author(s):  
Soeprijanto Soeprijanto ◽  
I Dewa Ayu Agung Warmadewanthi ◽  
Melania Suweni Muntini ◽  
Arino Anzip

Water hyacinth (Eichhornia crassipes) causes ecological and economic problems because it grows very fast and quickly consumes nutrients and oxygen in water bodies, affecting both the flora and fauna; besides, it can form blockages in the waterways, hindering fishing and boat use. However, this plant contains bioactive compounds that can be used to produce biofuels. This study investigated the effect of various substrates as feedstock for biogas production. A 125-l plug-flow anaerobic digester was utilized and the hydraulic retention time was 14 days; cow dung was inoculated into water hyacinth at a 2:1 mass ratio over 7 days. The maximum biogas yield, achieved using a mixture of natural water hyacinth and water (NWH-W), was 0.398 l/g volatile solids (VS). The cow dung/water (CD-W), hydrothermally pretreated water hyacinth/digestate, and hydrothermally pretreated water hyacinth/water (TWH-W) mixtures reached biogas yields of 0.239, 0.2198, and 0.115 l/g VS, respectively. The NWH-W composition was 70.57% CH4, 12.26% CO2, 1.32% H2S, and 0.65% NH3. The modified Gompertz kinetic model provided data satisfactorily compatible with the experimental one to determine the biogas production from various substrates. TWH-W and NWH-W achieved, respectively, the shortest and (6.561 days) and the longest (7.281 days) lag phase, the lowest (0.133 (l/g VS)/day) and the highest (0.446 (l/g VS)/day) biogas production rate, and the maximum and (15.719 l/g VS) and minimum (4.454 l/g VS) biogas yield potential.


Sign in / Sign up

Export Citation Format

Share Document