scholarly journals The Utilization of Water Hyacinth for Biogas Production in a Plug Flow Anaerobic Digester

2020 ◽  
Vol 10 (1) ◽  
pp. 27-35
Author(s):  
Soeprijanto Soeprijanto ◽  
I Dewa Ayu Agung Warmadewanthi ◽  
Melania Suweni Muntini ◽  
Arino Anzip

Water hyacinth (Eichhornia crassipes) causes ecological and economic problems because it grows very fast and quickly consumes nutrients and oxygen in water bodies, affecting both the flora and fauna; besides, it can form blockages in the waterways, hindering fishing and boat use. However, this plant contains bioactive compounds that can be used to produce biofuels. This study investigated the effect of various substrates as feedstock for biogas production. A 125-l plug-flow anaerobic digester was utilized and the hydraulic retention time was 14 days; cow dung was inoculated into water hyacinth at a 2:1 mass ratio over 7 days. The maximum biogas yield, achieved using a mixture of natural water hyacinth and water (NWH-W), was 0.398 l/g volatile solids (VS). The cow dung/water (CD-W), hydrothermally pretreated water hyacinth/digestate, and hydrothermally pretreated water hyacinth/water (TWH-W) mixtures reached biogas yields of 0.239, 0.2198, and 0.115 l/g VS, respectively. The NWH-W composition was 70.57% CH4, 12.26% CO2, 1.32% H2S, and 0.65% NH3. The modified Gompertz kinetic model provided data satisfactorily compatible with the experimental one to determine the biogas production from various substrates. TWH-W and NWH-W achieved, respectively, the shortest and (6.561 days) and the longest (7.281 days) lag phase, the lowest (0.133 (l/g VS)/day) and the highest (0.446 (l/g VS)/day) biogas production rate, and the maximum and (15.719 l/g VS) and minimum (4.454 l/g VS) biogas yield potential.

2016 ◽  
Vol 5 (2) ◽  
pp. 49-54
Author(s):  
Setiaty Pandia ◽  
Amin Trisnawati

The purpose of this study was to determine the effect of alkali pre-treatment methods on the quality and quantity of biogas. The study was doneby fermentation process the water hyacinth with KOH in a concentration of 6,7 M; 4 M;3 M; and 2,95 (M) with water in ratio hyacinth: water 70:30; 50:50; 30:70 and 100:0 (v/v) mixed with cow dung starter in an anaerobic digester batch system of 2,5 L capacity.  In this study the highest biogas production at KOH concentration  4 M was in ratio of 50:50 (v/v)with yield biogas volume  449 mL and 86,52% of COD revomal, 92,42% of TSS removal. The lowest biogas production at KOH concentration 6,7 M was in ratio of 70:30 (v/v) with yield biogas volume 132 mL and 86,55% of COD removal and 88,65%of TSS removal.


2018 ◽  
Vol 7 (2) ◽  
pp. 93-100 ◽  
Author(s):  
Agus Haryanto ◽  
Sugeng Triyono ◽  
Nugroho Hargo Wicaksono

The efficiency of biogas production in semi-continuous anaerobic digester is influenced by several factors, among other is loading rate. This research aimed at determining the effect of hydraulic retention time (HRT) on the biogas yield. Experiment was conducted using lab scale self-designed anaerobic digester of 36-L capacity with substrate of a mixture of fresh cow dung and water at a ratio of 1:1. Experiment was run with substrate initial amount of 25 L and five treatment variations of HRT, namely 1.31 gVS/L/d (P1), 2.47 gVS/L/d (P2), 3.82 gVS/L/d (P3), 5.35 gVS/L/d (P4) and 6.67 gVS/L/d (P5). Digester performance including pH, temperature, and biogas yield was measured every day. After stable condition was achieved, biogas composition was analyzed using a gas chromatograph. A 10-day moving average analysis of biogas production was performed to compare biogas yield of each treatment. Results showed that digesters run quite well with average pH of 6.8-7.0 and average daily temperature 28.7-29.1. The best biogas productivity (77.32 L/kg VSremoval) was found in P1 treatment (organic loading rate of 1.31 g/L/d) with biogas yield of 7.23 L/d. With methane content of 57.23% treatment P1 also produce the highest methane yield. Biogas production showed a stable rate after the day of 44. Modified Gompertz kinetic equation is suitable to model daily biogas yield as a function of digestion time.Article History: Received March 24th 2018; Received in revised form June 2nd 2018; Accepted June 16th 2018; Available onlineHow to Cite This Article: Haryanto, A., Triyono, S., and Wicaksono, N.H. (2018) Effect of Loading Rate on Biogas Production from Cow Dung in A Semi Continuous Anaerobic Digester. Int. Journal of Renewable Energy Development, 7(2), 93-100.https://doi.org/10.14710/ijred.7.2.93-100


2017 ◽  
Vol 9 (4) ◽  
pp. 2062-2067 ◽  
Author(s):  
Rozy Rozy ◽  
Rouf Ahmad Dar ◽  
Urmila Gupta Phutela

The present investigation reports the optimization of process parameters for biogas production from water hyacinth (Eichhornia crassipes). The different parameters like particle size, inoculum concentration, incubation temperature, metal ions and pH were optimized for biogas production. Maximum biogas was observed with water hyacinth of 1cm size, 40 % inoculum concentration. The temperature of 45°C along with neutral pH i.e. 7 was found to be most suitable for biogas production in the presence of manganese chloride (0.2 mM). Under optimized conditions, 44.9 l biogas/kg water hyacinth, 360.09 l/kg total solids and 397.95 l biogas/kg volatile solids were produced in a period of 40 days. The water hyacinth has proven to be a good source of biogas production and thus can be utilized as a potential feedstock for the biogas production.


Author(s):  
Klaus Dölle ◽  
Thomas Hughes

Production of electricity, heat and fuel are important for today’s social and economic growth. Biogas produced by anaerobic co-digestion is an alternative, carbon-neutral, renewable fuel that can be generated from local, low-cost organic materials. Co-digestion of Water Hyacinth (Eichhornia crassipes) and cow manure, was performed with a designed laboratory anaerobic fermentation system at 39°C ± 2°C. Co-digestion was conducted with 100% cow manure as a basis, and cow manure and water hyacinth ratios of 25%:75%:, 50%:50%, and 25%:75% for complete water hyacinth plants, water hyacinth roots and water hyacinth leaves fractions. Biogas production per gram volatile solid for anaerobic digested cow manure was between 134 ml to 355.59 ml. Co-digestion of cow manure and water hyacinth showed the highest average biogas production per gram volatile solids for complete water hyacinth and water hyacinth root mixture ratios of 25% cow manure and 75% of water hyacinth and water hyacinth roots yielding 273.01 ml and 462.63 ml respectively. The least biogas per gram volatile solids produced during co-fermentation was for complete water hyacinth and water hyacinth root with a ratio of 75% cow manure and 25% water hyacinth and water hyacinth root, yielding 163.77 ml and 250.28 ml respectively. Water hyacinth leave mixture at 50% cow manure and 50% water hyacinth leaves had the lowest average biogas production of 172.54 ml per gram volatile solids. The highest biogas production of 283.55 ml per gram volatile solids was achieved for a mixture of 75% cow manure and 25% water hyacinth leaves. The biogas composition without CO2 showed a biogas content for the cow manure between 54 and 65%. The application of co-digestion utilizing cow manure and water hyacinth as a feedstock could help minimize the negative environmental impact of water hyacinth and help to restore biodiversity, water quality and habitat of infested sites.


2017 ◽  
Vol 6 (1) ◽  
pp. 29-35
Author(s):  
Setiaty Pandia ◽  
Pri Hartini

Water hyacinth (Eichhornia crassipes) is a plant that become aquatic waste and its existence has not yet widelyused. The content of cellulose, hemicellulose, and lignin inside it can be used into biogas through fermentation process.The purpose of this research was to determine the effect of alkali pretreatment methods on the yield biogas volume and Total Suspended Solid (TSS) revomal percentage. The study was did by fermentation process the water hyacinth with NaOH concentration of 2,86; 3;4; and 6,67 (M) with water in ratio hyacinth:water 70:30; 50:50; 30:70  and 100:0 (v/v) mixed with cow dug starter in an anaerobic digester batch system of 2,5 L capacity. In this study the highest biogas production at NaOH concentration 6,67 M was in ratio of 70:30 (v/v) with yield biogas volume 506 mL and TSS revomal percentage of 93,23%. Minimum value of gasbio production concentration of NaOH 3M withwater hyacinth:water ratio 30:70 (v/v) generate yield biogas volume 158 mL and TSS revomal percentage of 81,48%.


2016 ◽  
Vol 36 (01) ◽  
pp. 79
Author(s):  
Darwin Darwin ◽  
Yusmanizar Yusmanizar ◽  
Muhammad Ilham ◽  
Afrizal Fazil ◽  
Satria Purwanto ◽  
...  

Thermal pre-treatment was given on corn stover in the purpose of breaking the lignin content; thus, it may help anaerobic microorganisms to convert polymer including cellulose and hemicelluloses into biogas. This study aimed to investigate the effects of thermal pre-treatment on corn stover in anaerobic digestion process related to the production of biogas as well as digestion process efficiency. This research was carried out by utilizing batch reactors where the temperature was maintained at mesophilic conditions above room temperature (33 ± 2 oC). Based on the result, it was known that thermal pre-treatment given on the corn stover may enhance anaerobic digestion process for biogas production at the first 10 days. This condition reduced the time of lag phase during anaerobic digestion. The biogas production of corn stover given thermal pre-treatment was slow at 26 days where their average total production were 12,412.5 mL,12,310 mL at 15 and 25 minutes thermal pre-treatment, respectively while biogas production of non pre-treated corn stover was 12,557 mL. The highest daily biogas production was accomplished by corn stover that was given thermal pre-treatment at 25 minutes (915 mL). Corn stover given with 15 minutes thermal pre-treatment also generated higher daily biogas production at day 9 (772.5 mL) compared with corn stover that was not pre-treated (405 mL). This research also revealed that corn stover given thermal pre-treatment reached higher biogas yield compared with non pre-treated corn stover where their biogas yield were 670.39, 690.65 mL/g volatile solids added at 15 and 25 minutes thermal pre- treatment respectively, and 456.37 mL/g volatile solids added of non pre-treated corn stover.Keywords: Thermal pre-treatment, corn stover, anaerobic digestion, biogas ABSTRAKThermal pre-treatment diberikan pada limbah tanaman jagung dengan tujuan untuk memecahkan kandungan lignin yang terdapat pada limbah tanaman jagung sehingga memudahkan mikroorganisme anaerobik untuk mengkonversi polimer yang berupa selulosa dan hemiselulosa menjadi biogas. Tujuan dari penelitian ini adalah untuk melakukan kajian mengenai penerapan thermal pre-treatment pada limbah tanaman jagung terhadap proses anaerobik digesi yang meliputi efisiensi proses digesi dan produksi biogas yang dihasilkan. Penelitian ini dilakukan dengan menggunakan reaktor tipe batch yang suhunya dipertahankan pada kondisi mesophilic atau di atas rata-rata suhu kamar (33 ± 2 oC). Hasil penelitian diperoleh bahwa thermal pre-treatment yang diberikan pada limbah tanaman jagung mampu mempercepat proses produksi biogas pada 10 hari pertama sehingga dapat mengurangi lag-phase pada proses anaerobik digesi. Limbah tanaman jagung yang diberikan thermal pre-treatment mengalami perlambatan produksi biogas pada hari ke 26 dengan rata-rata total produksi 12.412,5 mL untuk limbah tanaman jagung yang diberikan thermal pre- treatment selama 15 menit, dan 12.310 mL untuk limbah tanaman jagung yang diberikan thermal pre-treatment selama 25 menit, sedangkan limbah tanaman jagung yang tidak diberikan pre-treatment menghasilkan produksi biogas sebesar 12.557 mL pada hari ke 26. Produksi biogas harian tertinggi terjadi pada substrat yang diberikan thermal pre-treatment 25 menit, dengan produksi biogas tertinggi pada hari ke 9 dengan rata-rata produksi sebesar 915 mL. Substrat yang diberikan thermal pre-treatment 15 menit juga memproduksi biogas jauh lebih tinggi (772,5 mL) pada hari ke 9 jika dibandingkan dengan substrat tanpa diberikan pre-treatment yang hanya memproduksi biogas sebesar 405 mL. Data hasil penelitian menunjukkan bahwa limbah tanaman jagung yang diberikan thermal pre-treatment memperoleh biogas yield lebih tinggi dari pada yang tidak diberikan pre-treatment dimana 670,39 mL/g volatile solids untuk thermal pre- treatment 15 menit, 690,65 mL/g volatile solids untuk thermal pre-treatment 25 menit dan 456,37 mL/g volatile solids untuk limbah tanaman jagung yang tidak diberikan pre-treatment.Kata kunci: Thermal pre-treatment, limbah tanaman jagung, anaerobik digesi, biogas


2020 ◽  
Vol 181 ◽  
pp. 01005
Author(s):  
Makhura Emmanuel Pax ◽  
Edison Muzenda ◽  
Tumeletso Lekgoba

This paper aims at finding the effect of co-digestion of cow dung and food waste on total biogas yield. Biogas production was improved through co-digestion of cow dung and food waste (FW) containing a small fraction of inoculum under mesophilic temperature (37ºC) over a retention time of 24 days. Co-digestion ratios of 1:1, 2:1 and 3:1 for cowdung/foodwaste were used for the study on anaerobic digestion on the co digested matter. Tests were carried out starting with the preparation of substrates, substrate characterization to determine the moisture content (MC), total solids (TS), volatile solids (VS) and ultimately batch anaerobic digestion experiments under thermophilic conditions (370C). The moisture content, volatile solids and total solids for food waste were 78, 22 and 90.7% respectively while the characteristics for cow dung were 67.2, 32.8 and 96.0 % respectively. From the study, a mixing ratio of cow dung: food waste of 1:2 was found to be the optimum substrate mixture for biogas production at 25595.7 Nml. The accumulated gas volumes of 18756.6, 14042.5, 13940.8 and 13839.1 Nml were recorded for cow dung: food waste ratios of 2:1, 1:1, 1:3 and 3:1 respectively. For a co-digestion containing more of the food waste than cow dung, a higher volume of biogas is produce.


2015 ◽  
Vol 73 (2) ◽  
pp. 355-361 ◽  
Author(s):  
M. A. Hernández-Shek ◽  
L. S. Cadavid-Rodríguez ◽  
I. V. Bolaños ◽  
A. C. Agudelo-Henao

The potential to recover bioenergy from anaerobic digestion of water hyacinth (WH) and from its co-digestion with fruit and vegetable waste (FVW) was investigated. Initially, biogas and methane production were studied using the biochemical methane potential (BMP) test at 2 g volatile solids (VS) L−1 of substrate concentration, both in the digestion of WH alone and in its co-digestion with FVW (WH-FVW ratio of 70:30). Subsequently, the biogas production was optimized in terms of total solids (TS) concentration, testing 4 and 6% of TS. The BMP test showed a biogas yield of 0.114 m3 biogas kg−1 VSadded for WH alone. On the other hand, the biogas potential from the WH-FVW co-digestion was 0.141 m3 biogas kg−1 VSadded, showing an increase of 23% compared to that of WH alone. Maximum biogas production of 0.230 m3 biogas kg−1 VSadded was obtained at 4% of TS in the co-digestion of WH-FVW. Using semi-continuously stirred tank reactors, 1.3 m3 biogas yield kg−1 VSadded was produced using an organic loading rate of 2 kg VS m−3 d−1 and hydraulic retention time of 15 days. It was also found that a WH-FVW ratio of 80:20 improved the process in terms of pH stability. Additionally, it was found that nitrogen can be recovered in the liquid effluent with a potential for use as a liquid fertilizer.


Informatics ◽  
2021 ◽  
Vol 8 (2) ◽  
pp. 38
Author(s):  
Aman Basu ◽  
Amit Kumar Hazra ◽  
Shibani Chaudhury ◽  
Andrew B. Ross ◽  
Srinivasan Balachandran

This study aims to present a systematic data-driven bibliometric analysis of the water hyacinth (Eichhornia crassipes) infestation problem around the globe. As many solutions are being proposed in academia for its management, mitigation, and utilization, it requires investigation through a systematic scrutinizing lens. In this study, literature records from 1977 to June 2020 concerning research on water hyacinth are taken from Scopus for text analysis. Trends in the publication of different article types, dynamics of publication, clustering, correlation, and co-authoring patterns between different countries are observed. The cluster analysis indicated four clusters viz. (i) ecological works related to species, (ii) pollutant removal process and methods, (iii) utilization of biofuels for biogas production, and (iv) modelling works. It is clear from the networking analysis that most of the publications regarding water hyacinth are from India, followed by China and the United States. Sentiment analysis with the AFINN lexicon showed that the negative sentiment towards the aquatic weed has intensified over time. An exploratory analysis was performed using a bigram network plot, depicting and outlining different important domains of water hyacinth research. Water hyacinth research has passed the pioneering phase and is now at the end of a steady growth phase or at the beginning of an acceleration phase. In this article, an overview is given for the entirety of water hyacinth research, with an indication of future trends and possibilities.


Sign in / Sign up

Export Citation Format

Share Document