The Correlation Between Children’s Acute Lymphoblastic Leukemia Drug Resistance System Induced by Metabolomics-Based 6-Mercaptopurine and Hypoxanthine-Guanine Phosphoribosyl Transferase 1 Protein

2022 ◽  
Vol 12 (1) ◽  
pp. 61-70
Author(s):  
Wenfang Chen ◽  
Weiwei Qin

This study aimed to explore 6-mercaptopurine (MP)-induced children’s acute lymphoblastic leukemia (ALL) drug resistance system and leukemia hypoxanthine-guanine phosphoribosyl transferase 1 (HPRT1) protein. Based on metabonomics, drug resistance of 6MP-Reh cell line was established by increasing concentration administration method, and the degree of drug resistance of 6MP-Reh was verified by apoptosis test, western blotting (WB) test, and drug sensitivity test. The changes of tissue inhibitor of matrix metalloproteinase (TIMP) and thioguanosine monophosphate (TGMP) in drug-resistant cells were detected through liquid chromatograph (LC)/mass spectrometer (MS). The 6MP-Reh-wt cell line was established by lentivirus infection, so as to verify the correlation between HPRT1 and drug resistance mechanism. The results showed that the inhibition concentration (IC50) value, cell vitality (CV), apoptosis rate, and 6-MP content of 6MP-Reh were higher hugely than those of Reh (P < 0.05). The contents of HPRT1, TIMP, and TGMP in 6MP-Reh cells were lower sharply than the contents of Reh cells (P < 0.001). The IC50 value of 6MP-Reh-wt was also lower steeply than the value of 6MP-Reh (P < 0.001), and the concentrations of TIMP and TGMP increased obviously (P < 0.05). Therefore, it indicated that the mutation of HPRT1 in drugresistant cell lines could lead to a decrease in their viability and cause leukemia cells to develop resistance to 6-MP. In addition, HPRT1 gene could improve their resistance to 6-MP.

2003 ◽  
Vol 37 (1) ◽  
pp. 84-91 ◽  
Author(s):  
Roderick A.F. MacLeod ◽  
Stefan Nagel ◽  
Maren Kaufmann ◽  
Johannes W.G. Janssen ◽  
Hans G. Drexler

2010 ◽  
Vol 75 (8) ◽  
pp. 887-903 ◽  
Author(s):  
Peter Kutschy ◽  
Andrej Sýkora ◽  
Zuzana Čurillová ◽  
Mária Repovská ◽  
Martina Pilátová ◽  
...  

Glyoxyl analogs of indole phytoalexins brassinin, 1-methoxybrassinin, brassitin, 1-methoxybrassitin and 1-methoxybrassenin B were prepared, using (1H-indol-3-yl)-, (1-methoxyindol-3-yl)- and [1-(2,3,4,6-tetra-O-acetyl-β-D-glucopyranosyl)indol-3-yl]glyoxyl chlorides as starting compounds. Synthesized products were examined for their antiproliferative activity against human cancer cell lines Jurkat (T-cell acute lymphoblastic leukemia), MCF-7 (breast adenocarcinoma, estrogen receptor-positive), MDA-MB-231 (breast adenocarcinoma, estrogen receptor-negative), HeLa (cervical adenocarcinoma), CCRF-CEM cell line (T-cell acute lymphoblastic leukemia) and A-549 cell line (lung adenocarcinoma), and their activity compared with natural phytoalexins and corresponding (1H-indol-3-yl)acetic acid derivatives. The highest potency with IC50 3.3–66.1 μmol l–1 was found for glyoxyl analogs of 1-methoxybrassenin B.


1985 ◽  
Vol 9 (12) ◽  
pp. 1497-1506 ◽  
Author(s):  
L.J. Jenski ◽  
B.C. Lampkin ◽  
T.S. Goh ◽  
P. Dinndorf ◽  
D.A. Hake ◽  
...  

2021 ◽  
Vol 22 (22) ◽  
pp. 12167
Author(s):  
Somayeh S. Tarighat ◽  
Fei Fei ◽  
Eun Ji Joo ◽  
Hisham Abdel-Azim ◽  
Lu Yang ◽  
...  

Environmentally-mediated drug resistance in B-cell precursor acute lymphoblastic leukemia (BCP-ALL) significantly contributes to relapse. Stromal cells in the bone marrow environment protect leukemia cells by secretion of chemokines as cues for BCP-ALL migration towards, and adhesion to, stroma. Stromal cells and BCP-ALL cells communicate through stromal galectin-3. Here, we investigated the significance of stromal galectin-3 to BCP-ALL cells. We used CRISPR/Cas9 genome editing to ablate galectin-3 in stromal cells and found that galectin-3 is dispensable for steady-state BCP-ALL proliferation and viability. However, efficient leukemia migration and adhesion to stromal cells are significantly dependent on stromal galectin-3. Importantly, the loss of stromal galectin-3 production sensitized BCP-ALL cells to conventional chemotherapy. We therefore tested novel carbohydrate-based small molecule compounds (Cpd14 and Cpd17) with high specificity for galectin-3. Consistent with results obtained using galectin-3-knockout stromal cells, treatment of stromal-BCP-ALL co-cultures inhibited BCP-ALL migration and adhesion. Moreover, these compounds induced anti-leukemic responses in BCP-ALL cells, including a dose-dependent reduction of viability and proliferation, the induction of apoptosis and, importantly, the inhibition of drug resistance. Collectively, these findings indicate galectin-3 regulates BCP-ALL cell responses to chemotherapy through the interactions between leukemia cells and the stroma, and show that a combination of galectin-3 inhibition with conventional drugs can sensitize the leukemia cells to chemotherapy.


Leukemia ◽  
2004 ◽  
Vol 18 (3) ◽  
pp. 521-529 ◽  
Author(s):  
N L Ramakers-van Woerden ◽  
H B Beverloo ◽  
A J P Veerman ◽  
B M Camitta ◽  
A H Loonen ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document