Split-Bregman Algorithm with Attenuation Correction for L-Shell Polychromatic X-ray Fluorescence Computed Tomography

2020 ◽  
Vol 10 (3) ◽  
pp. 572-578
Author(s):  
Long Liu ◽  
Bo Ma ◽  
Xiaowei Liu ◽  
Jinlan Liu ◽  
Ning Ding

L-shell X-ray fluorescence computed tomography based on polychromatic X-rays is a promising imaging technique for early cancer diagnosis. However, the presence of self-absorption and the long scanning time limit its usage in clinic. In this work, a reconstruction method based on split-Bregman algorithm which used sparseview projection data was proposed. Furthermore, the attenuation effect was also considered in the algorithm. In the attenuation correction, factors including the X-ray energy and the platinum concentration were taken into account. Then weighted factors calculated in the procedure of attenuation correction were added into the contribution function of pixels in the split-Bregman based reconstruction method. In the end, the feasibility of this method was tested using a cylindrical phantom with 8 mm in diameter by the Monte Carlo simulation. The phantom contained four inserts, all of which were 1.5 millimeter in diameter and filled with 0.10%, 0.20%, 0.40% and 0.80% platinum solutions, respectively. The results show that both the contrast-to-noise ratios and lowest detectable sensitivities are improved for the proposed method, comparing to the conventional MLEM. The contrast-to-noise ratios of images reconstructed by our method with 45 projections are already better than that reconstructed by MLEM with 60 projections. When using 60 projections in our method and comparing to 60 projections in the MLEM with correction, the contrast-to-noise ratio of the insert filled with 0.10% platinum solutions increased from 6.49 to 36.90, indicating its high efficiency and robustness.

Author(s):  
Theodore J. Heindel ◽  
Terrence C. Jensen ◽  
Joseph N. Gray

There are several methods available to visualize fluid flows when one has optical access. However, when optical access is limited to near the boundaries or not available at all, alternative visualization methods are required. This paper will describe flow visualization using an X-ray system that is capable of digital X-ray radiography, digital X-ray stereography, and digital X-ray computed tomography (CT). The unique X-ray flow visualization facility will be briefly described, and then flow visualization of various systems will be shown. Radiographs provide a two-dimensional density map of a three dimensional process or object. Radiographic images of various multiphase flows will be presented. When two X-ray sources and detectors simultaneously acquire images of the same process or object from different orientations, stereographic imaging can be completed; this type of imaging will be demonstrated by trickling water through packed columns and by absorbing water in a porous medium. Finally, local time-averaged phase distributions can be determined from X-ray computed tomography (CT) imaging, and this will be shown by comparing CT images from two different gas-liquid sparged columns.


2020 ◽  
Vol 27 (3) ◽  
pp. 737-745
Author(s):  
Zhijun Chi ◽  
Yingchao Du ◽  
Wenhui Huang ◽  
Chuanxiang Tang

A Thomson scattering X-ray source can provide quasi-monochromatic, continuously energy-tunable, polarization-controllable and high-brightness X-rays, which makes it an excellent tool for X-ray fluorescence computed tomography (XFCT). In this paper, we examined the suppression of Compton scattering background in XFCT using the linearly polarized X-rays and the implementation feasibility of linearly polarized XFCT based on this type of light source, concerning the influence of phantom attenuation and the sampling strategy, its advantage over K-edge subtraction computed tomography (CT), the imaging time, and the potential pulse pile-up effect by Monte Carlo simulations. A fan beam and pinhole collimator geometry were adopted in the simulation and the phantom was a polymethyl methacrylate cylinder inside which were gadolinium (Gd)-loaded water solutions with Gd concentrations ranging from 0.2 to 4.0 wt%. Compared with the case of vertical polarization, Compton scattering was suppressed by about 1.6 times using horizontal polarization. An accurate image of the Gd-containing phantom was successfully reconstructed with both spatial and quantitative identification, and good linearity between the reconstructed value and the Gd concentration was verified. When the attenuation effect cannot be neglected, one full cycle (360°) sampling and the attenuation correction became necessary. Compared with the results of K-edge subtraction CT, the contrast-to-noise ratio values of XFCT were improved by 2.03 and 1.04 times at low Gd concentrations of 0.2 and 0.5 wt%, respectively. When the flux of a Thomson scattering light source reaches 1013 photons s−1, it is possible to finish the data acquisition of XFCT at the minute or second level without introducing pulse pile-up effects.


2021 ◽  
pp. 1-16
Author(s):  
Ying Huang ◽  
Qian Wan ◽  
Zixiang Chen ◽  
Zhanli Hu ◽  
Guanxun Cheng ◽  
...  

Reducing X-ray radiation is beneficial for reducing the risk of cancer in patients. There are two main approaches for achieving this goal namely, one is to reduce the X-ray current, and another is to apply sparse-view protocols to do image scanning and projections. However, these techniques usually lead to degradation of the reconstructed image quality, resulting in excessive noise and severe edge artifacts, which seriously affect the diagnosis result. In order to overcome such limitation, this study proposes and tests an algorithm based on guided kernel filtering. The algorithm combines the characteristics of anisotropic edges between adjacent image voxels, expresses the relevant weights with an exponential function, and adjusts the weights adaptively through local gray gradients to better preserve the image structure while suppressing noise information. Experiments show that the proposed method can effectively suppress noise and preserve the image structure. Comparing with similar algorithms, the proposed algorithm greatly improves the peak signal-to-noise ratio (PSNR), structural similarity (SSIM), and root mean square error (RMSE) of the reconstructed image. The proposed algorithm has the best effect in quantitative analysis, which verifies the effectiveness of the proposed method and good image reconstruction performance. Overall, this study demonstrates that the proposed method can reduce the number of projections required for repeated CT scans and has potential for medical applications in reducing radiation doses.


2018 ◽  
Vol 12 (1) ◽  
pp. 18-28
Author(s):  
Nirmal D Patil ◽  
Sudhir K Srivastava ◽  
Sunil Bhosale ◽  
Shaligram Purohit

<sec><title>Study Design</title><p>This was a double-blinded cross-sectional study, which obtained no financial support for the research.</p></sec><sec><title>Purpose</title><p>To obtain a detailed morphometry of the lateral mass of the subaxial cervical spine.</p></sec><sec><title>Overview of Literature</title><p>The literature offers little data on the dimensions of the lateral mass of the subaxial cervical spine.</p></sec><sec><title>Methods</title><p>We assessed axial, sagittal, and coronal computed tomography (CT) cuts and anteroposterior and lateral X-rays of the lateral mass of the subaxial cervical spine of 104 patients (2,080 lateral masses) who presented to a tertiary care public hospital (King Edward Memorial Hospital, Mumbai) in a metropolitan city in India.</p></sec><sec><title>Results</title><p>For a majority of the parameters, males and females significantly differed at all levels (<italic>p</italic>&lt;0.05). Females consistently required higher (<italic>p</italic>&lt;0.05) minimum lateral angulation and lateral angulation. While the minimum lateral angulation followed the order of C5&lt;C4&lt;C6&lt;C3, the lateral angulation followed the order of C3&lt;C5&lt;C4&lt;C6. The lateral mass becomes longer and narrower from C3 to C7. In axial cuts, the dimensions increased from C3 to C6. The sagittal cut thickness and diagonal length increased and the sagittal cut height decreased from C3 to C7. The sagittal cut height was consistently lower in the Indian population at all levels, especially at the C7 level, as compared with the Western population, thereby questioning the acceptance of a 3.5-mm lateral mass screw. A good correlation exists between X-ray- and CT-based assessments of the lateral mass.</p></sec><sec><title>Conclusions</title><p>Larger lateral angulation is required for Indian patients, especially females. The screw length can be effectively calculated by analyzing the lateral X-ray. A CT scan should be reserved for specific indications, and a caution must be exercised while inserting C7 lateral mass screws.</p></sec>


Materials ◽  
2020 ◽  
Vol 13 (19) ◽  
pp. 4371 ◽  
Author(s):  
Kiana Nikeghbal ◽  
Zahra Zamanian ◽  
Shoaleh Shahidi ◽  
Gianrico Spagnuolo ◽  
Parisa Soltani

Researchers have always been interested in finding new and effective materials for protection against radiation. This experimental study aimed to design and fabricate new types of nano-material and micro-material based shields against the ionizing effect of cone beam computed tomography (CBCT) X-rays. To fabricate a flexible prototype, we added dioctyl phthalate (DOP) oil to emulsion polyvinyl chloride (PVC) powder. The paste was mixed and dispersed. Then, nano- and micro-powders of WO3 and Bi2O3 were added to the paste, with the weight ratio of 20% PVC, 20% DOP, and 60% nano- and micro-metals. Using an ultrasonic mixer, the polymer matrix and metals were mixed and a paste with a thick texture was developed. The resultant paste was poured into glass molds and the molds were then heated in an oven. After cooling, the resultant sheets were selected for further experiments. A CBCT unit and dosimeter were used to evaluate the characterization and X-ray shielding properties of the fabricated prototypes. The half-value layers (HVL) for nano-WO3, micro-WO3, nano-Bi2O3, and micro-Bi2O3 were 0.0390, 0.0524, 0.0351, and 0.0374 cm, respectively. In addition, the linear attenuation coefficient (µ) for these materials were 17.77, 13.20, 19.71, and 18.5 cm−1, respectively. The findings indicate that nano-structured samples are more effective in the attenuation of X-ray energy. The nano-structured WO3 prototype was nearly 34% more efficient in attenuating radiation compared to the micro-structured WO3 prototype. This difference in nano- and micro-structured Bi2O3 prototypes was 6.5%.


2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Pasquale Delogu ◽  
Vittorio Di Trapani ◽  
Luca Brombal ◽  
Giovanni Mettivier ◽  
Angelo Taibi ◽  
...  

Abstract The limits of mammography have led to an increasing interest on possible alternatives such as the breast Computed Tomography (bCT). The common goal of all X-ray imaging techniques is to achieve the optimal contrast resolution, measured through the Contrast to Noise Ratio (CNR), while minimizing the radiological risks, quantified by the dose. Both dose and CNR depend on the energy and the intensity of the X-rays employed for the specific imaging technique. Some attempts to determine an optimal energy for bCT have suggested the range 22 keV–34 keV, some others instead suggested the range 50 keV–60 keV depending on the parameters considered in the study. Recent experimental works, based on the use of monochromatic radiation and breast specimens, show that energies around 32 keV give better image quality respect to setups based on higher energies. In this paper we report a systematic study aiming at defining the range of energies that maximizes the CNR at fixed dose in bCT. The study evaluates several compositions and diameters of the breast and includes various reconstruction algorithms as well as different dose levels. The results show that a good compromise between CNR and dose is obtained using energies around 28 keV.


2014 ◽  
Vol 70 (a1) ◽  
pp. C1737-C1737
Author(s):  
Pawel Grochulski ◽  
Miroslaw Cygler ◽  
Michel Fodje ◽  
Shaunivan Labiuk ◽  
James Gorin ◽  
...  

The Canadian Macromolecular Crystallography Facility (CMCF) at the Canadian Light Source (CLS) is a suite of fully automated beamlines, 08ID-1 and 08B1-1 [1]. It serves over 60 Canadian groups plus academic and commercial users in the US. Besides remote data collection, we offer Mail-In service where data are collected by CMCF staff. Beamline 08B1-1 has been in operation since 2011 and beamline 08ID-1 since 2006. When beamline 08ID-1 was designed, over 10 years ago, small crystals were defined as having sizes of 50-100 μm. Today, the most challenging experiments require more intense X-ray beams that can be focused to accommodate much smaller crystal sizes of less than 5 μm with flux on the order of 10^11 photons/s. To reach these stringent parameters, a new more powerful source of X-rays will be required, which will be provided by a longer small-gap in-vacuum undulator (SGU). To accommodate the higher power levels and to focus X-rays to a smaller focal spot with a high degree of spatial and temporal stability, the existing X-ray optical elements need to be upgraded. The remaining components of the project include a 5-axis alignment table for improving alignment of small samples with the microbeam, a high-efficiency robotic sample-changer and a single-photon X-ray detector. Several options for the new design will be discussed. These developments are consistent with the current direction of structural biology research at the CLS [2]. Since 2006 over 225 (240) papers and 400 (444) PDB deposits reported data collected at beamline 08ID-1. Parentheses indicate the total number for the CMCF. Many of these have been published in very high impact journals such as N. Engl. J. Med., Nature, Cell, Science, PNAS, among others (http://cmcf.lightsource.ca/publications/).


Sign in / Sign up

Export Citation Format

Share Document