Fabrication of SnS2 Flower Like Nanoflake Assemblies Through Thermal Evaporation

2007 ◽  
Vol 7 (12) ◽  
pp. 4540-4545 ◽  
Author(s):  
Subhajit Biswas ◽  
Soumitra Kar ◽  
Tandra Ghoshal ◽  
Subhadra Chaudhuri

Uniform as well as flower like patterns of SnS2 nanoflakes were produced by a thermal evaporation process. Interpenetrating phenomenon was observed between the individual nanoflakes during the course of their lateral growth. The interpenetrating growth and controlled vapor concentration as well as the substrate temperature leads to the formation of flower like assemblies of SnS2 nanoflakes. Morphology and growth mechanism of the nanostructures were studied by scanning electron microscopic observations at different stages of the nanoflake growth. The produced nanoflakes were characterized by X-ray diffraction, scanning and transmission electron microscopy, and Raman spectroscopic measurements. SnS2 nanoflakes were perfectly single crystalline and growth direction of the nanoflakes was along the {101}-lattice plane.

2011 ◽  
Vol 2011 ◽  
pp. 1-6 ◽  
Author(s):  
L. Shekari ◽  
H. Abu Hassan ◽  
S. M. Thahab ◽  
Z. Hassan

In the current research, an easy and inexpensive method is used to synthesize highly crystalline gallium nitride (GaN) nanowires (NWs) on two different substrates [i.e., porous zinc oxide (PZnO) and porous gallium nitride (PGaN)] on Si (111) wafer by thermal evaporation without any catalyst. Microstructural studies by scanning electron microscopy and transmission electron microscope measurements reveal the role of the substrates in the nucleation and alignment of the GaN NWs. Further structural and optical characterizations were performed using high-resolution X-ray diffraction, energy-dispersive X-ray spectroscopy, and photoluminescence spectroscopy. Results indicate that the NWs have a single-crystal hexagonal GaN structure and growth direction in the (0001) plane. The quality and density of GaN NWs grown on different substrates are highly dependent on the lattice mismatch between the NWs and their substrates. Results indicate that NWs grown on PGaN have better quality and higher density compared to NWs on PZnO.


2012 ◽  
Vol 2012 ◽  
pp. 1-7 ◽  
Author(s):  
Beata Zielińska ◽  
Ewa Mijowska ◽  
Ryszard J. Kalenczuk

K-Ta mixed oxides photocatalysts have been prepared by impregnation followed by calcination. The influence of the reaction temperature (450°C–900°C) on the phase formation, crystal morphology, and photocatalytic activity in hydrogen generation of the produced materials was investigated. The detailed analysis has revealed that all products exhibit high crystallinity and irregular structure. Moreover, two different crystal structures of potassium tantalates such as KTaO3and K2Ta4O11were obtained. It was also found that the sample composed of KTaO3and traces of unreacted Ta2O5(annealed at 600°C) exhibits the highest activity in the reaction of photocatalytic hydrogen generation. The crystallographic phases, optical and vibronic properties were examined by X-ray diffraction (XRD) and diffuse reflectance (DR) UV-vis and resonance Raman spectroscopic methods, respectively. Morphology and chemical composition of the produced samples were studied using a high-resolution transmission electron microscope (HR-TEM) and an energy dispersive X-ray spectrometer (EDX) as its mode.


1990 ◽  
Vol 202 ◽  
Author(s):  
L. H. Chou ◽  
M. C. Kuo

ABSTRACTThin Sb films have been prepared on glass substrates by rapid thermal evaporation. Films with thicknesses varied from 260 Å to 1300Å were used for the study. X-ray diffraction data showed that for films deposited at room substrate temperature, an almost random grain orientation was observed for films of 1300 Å thick and a tendency for preferred grain orientation was observed as films got thinner. For films of 260 Å thick, only two x-ray diffraction peaks--(003) and (006) were observed. After thermal annealing, secondary grains grew to show preferred orientation in all the films. This phenomenon was explained by surface-energy-driven secondary grain growth. This paper reports the effects of annealing time and film thickness on the secondary grain growth and the evolution of thin Sb film microstmctures. Transmission electron microscopy (TEM) and x-ray diffraction were used to characterize the films.


Materials ◽  
2019 ◽  
Vol 12 (19) ◽  
pp. 3249 ◽  
Author(s):  
Satoshi Idenoue ◽  
Yoshitaka Oga ◽  
Daichi Hashimoto ◽  
Kazuya Yamamoto ◽  
Jun-ichi Kadokawa

In this study, we have performed the preparation of reswellable amorphous porous celluloses through regeneration from hydrogels. The cellulose hydrogels were first prepared from solutions with an ionic liquid, 1-butyl-3-methylimidazolium chloride (BMIMCl), in different concentrations. Lyophilization of the hydrogels efficiently produced the regenerated celluloses. The powder X-ray diffraction and scanning electron microscopic measurements of the products suggest an amorphous structure and porous morphology, respectively. Furthermore, the pore sizes of the regenerated celluloses, or in turn, the network sizes of cellulose chains in the hydrogels, were dependent on the concentrations of the initially prepared solutions with BMIMCl, which also affected the tensile mechanical properties. It was suggested that the dissolution states of the cellulose chains in the solutions were different, in accordance with the concentrations, which representatively dominated the pore and network sizes of the above materials. When the porous celluloses were immersed in water, reswelling was observed to regenerate the hydrogels.


2002 ◽  
Vol 722 ◽  
Author(s):  
Chunming Jin ◽  
Ashutosh Tiwari ◽  
A. Kvit ◽  
J. Narayan

AbstractEpitaxial ZnO films have been grown on Si(111) substrates by employing a AlN buffer layer during a pulsed laser-deposition process. The epitaxial structure of AlN on Si(111) substrate provides a template for ZnO growth. The resultant films are evaluated by transmission electron microscopy, x-ray diffraction, and electrical measurements. The results of x-ray diffraction and electron microscopy on these films clearly show the epitaxial growth of ZnO films with an orientational relationship of ZnO[0001]||Aln[0001]||Si[111] along the growth direction and ZnO[2 11 0]||AlN[2 11 0]||Si[0 11] along the in-plane direction. High electrical conductivity (103 S/m at 300 K) and a linear I-V characteristics make these epitaxial films ideal for microelectronic, optoelectronic, and transparent conducting oxide applications.


2006 ◽  
Vol 517 ◽  
pp. 21-24
Author(s):  
Hyoun Woo Kim ◽  
S.H. Shim

We have synthesized the belt-like structures of tin oxide (SnO2) by carrying out the thermal evaporation of solid Sn powders. We have analyzed the samples with scanning electron microscopy, X-ray diffraction, transmission electron microscopy and photoluminescence (PL). The obtained nanobelts were single crystalline with a tetragonal rutile structure. PL spectrum exhibited the visible light emission. We have discussed the possible growth mechanisms.


2004 ◽  
Vol 19 (10) ◽  
pp. 2905-2912 ◽  
Author(s):  
Tokeer Ahmad ◽  
Ashok K. Ganguli

Nanoparticles of barium orthotitanate (Ba2TiO4) was obtained using microemulsions (avoiding Ba-alkoxide). Powder x-ray diffraction studies of the powder after calcining at 800 °C resulted in a mixture of orthorhombic (70%) and monoclinic (30%) phases. The high-temperature orthorhombic form present at 800 °C was due to the small size of particles obtained by the reverse micellar route. Pure orthorhombic Ba2TiO4 was obtained on further sintering at 1000 °C with lattice parameters a = 6.101(2) Å, b =22.94(1) Å, c = 10.533(2) Å (space group, P21nb). The particle size obtained from x-ray line broadening studies and transmission electron microscopic studies was found to be 40–50 nm for the powder obtained after heating at 800 °C. Sintering at 1000 °C showed increase in grain size up to 150 nm. Our studies corroborate well with the presence of a martensitic transition in Ba2TiO4. The dielectric constant was found to be 40 for Ba2TiO4 (at 100 kHz) for samples sintered at 1000 °C. The dielectric loss obtained was low (0.06) at 100 kHz.


1997 ◽  
Vol 12 (1) ◽  
pp. 161-174 ◽  
Author(s):  
W. Staiger ◽  
A. Michel ◽  
V. Pierron-Bohnes ◽  
N. Hermann ◽  
M. C. Cadeville

We find that the [Ni3.2nmPt1.6nm] × 15 and [Ni3.2nmPt0.8nm] × 15 multilayers are semicoherent and display a columnar morphology. From both the period of the moir’e fringes and the positions of the diffraction peaks in electronic (plan-view and crosssection geometries) and x-ray diffraction patterns, one deduces that the nickel is relaxed (at least in the error bars of all our measurements), whereas the platinum remains slightly strained (≈−1%). The interfaces are sharp; no intermixing takes place giving rise to neat contrasts in transmission electron microscopy (TEM) and to high intensities of the superlattice peaks in the growth direction in both diffraction techniques. The relaxation of the interfacial misfit occurs partially through misfit dislocations, partially through the strain of platinum. A quasiperiodic twinning occurs at the interfaces, the stacking fault which forms the twin being the most often located at the interface Pt/Ni, i.e., when a Pt layer begins to grow on the Ni layer. The simulation of the θ/2θ superlattice peak intensities takes into account the columnar microstructure. It shows that the roughness is predominantly at medium scale with a fluctuation of about 12.5% for Ni layers and negligible for Pt layers.


2013 ◽  
Vol 78 (9) ◽  
pp. 1387-1395 ◽  
Author(s):  
Nebojsa Nikolic ◽  
Vesna Maksimovic ◽  
Goran Brankovic ◽  
Predrag Zivkovic ◽  
Miomir Pavlovic

Lead electrodeposition processes from the basic (nitrate) and complex (acetate) electrolytes were mutually compared by the scanning electron microscopic and the X-ray diffraction analysis of the produced powder particles. The shape of dendritic particles strongly depended on the type of electrolyte. The dendrites composed of stalk and weakly developed primary branches (the primary type) were predominantly formed from the basic electrolyte. The ramified dendrites composed of stalk and of both primary and secondary branches (the secondary type) were mainly formed from the complex electrolyte. In the both type of powder particles Pb crystallites were predominantly oriented in the (111) plane. Formation of powder particles of the different shape with the strong (111) preferred orientation was discussed and explained by the consideration of the general characteristics of the growth of a crystal in the electrocrystallization processes.


Sign in / Sign up

Export Citation Format

Share Document