Interfacial Spin Polarization and Magnetic Structure of Co/MgO/Co Magnetic Tunnel Junction: Ab Initio Calculation

2008 ◽  
Vol 8 (4) ◽  
pp. 2016-2021 ◽  
Author(s):  
Chiho Kim ◽  
Yong-Chae Chung

Using ab initio method based on the density functional theory, the equilibrium bcc-Co(001)/rocksalt-MgO(001)/bcc-Co(001) magnetic tunnel junction structure was investigated. Spin polarization and magnetic moment were calculated for each atomic slab in the equilibrium structure by spin dependent density of states analysis. Interfacial Co atoms showed significantly larger spin polarization of –88.3%, compared to the value of inner Co slabs, –82.3%, and bulk bcc Co, –82.1%. Interestingly, Mg and O atoms also showed induced spin polarizability ranged from –45.0% to –66.0%, except for O atoms in the centered slab of barrier layer, which showed relatively small polarization, –14.9%. Magnetic moments for the electrode Co atoms were calculated to be ∼1.74 μB with no significant variation across the electrode.

Nanomaterials ◽  
2018 ◽  
Vol 8 (12) ◽  
pp. 1059 ◽  
Author(s):  
Ivana Miháliková ◽  
Martin Friák ◽  
Yvonna Jirásková ◽  
David Holec ◽  
Nikola Koutná ◽  
...  

Quantum-mechanical calculations are applied to examine magnetic and electronic properties of phases appearing in binary Fe-Al-based nanocomposites. The calculations are carried out using the Vienna Ab-initio Simulation Package which implements density functional theory and generalized gradient approximation. The focus is on a disordered solid solution with 18.75 at. % Al in body-centered-cubic ferromagnetic iron, so-called α -phase, and an ordered intermetallic compound Fe 3 Al with the D0 3 structure. In order to reveal the impact of the actual atomic distribution in the disordered Fe-Al α -phase three different special quasi-random structures with or without the 1st and/or 2nd nearest-neighbor Al-Al pairs are used. According to our calculations, energy decreases when eliminating the 1st and 2nd nearest neighbor Al-Al pairs. On the other hand, the local magnetic moments of the Fe atoms decrease with Al concentration in the 1st coordination sphere and increase if the concentration of Al atoms increases in the 2nd one. Furthermore, when simulating Fe-Al/Fe 3 Al nanocomposites (superlattices), changes of local magnetic moments of the Fe atoms up to 0.5 μ B are predicted. These changes very sensitively depend on both the distribution of atoms and the crystallographic orientation of the interfaces.


2007 ◽  
Vol 21 (30) ◽  
pp. 5091-5098 ◽  
Author(s):  
Q. L. LU ◽  
J. C. JIANG ◽  
J. G. WAN ◽  
G. H. WANG

The ground state structures of Co 12 X ( X = Ni , Ag , Pt , Au ) clusters are obtained by a genetic algorithm with a Gupta-like many-body potential, and further optimized using the density functional theory with generalized gradient approximation. The structures of Co 12 X have a slightly distorted icosahedral pattern. The X atom is on the surface for the most stable configuration. Their total magnetic moments are 0μ B , 3μ B , 21μ B , and 22μ B , respectively. The reasons for the reduction of magnetism of Co 12 X are discussed in detail.


2010 ◽  
Vol 09 (06) ◽  
pp. 619-622
Author(s):  
BOTHINA A. HAMAD

In this work, a theoretical study of the structural, electronic and magnetic properties are presented for Mn 0.5 Ni 0.5 alloyed overlayer adsorbed on Cu (001) surface. The calculations were performed using the density functional theory (DFT) and the exchange-correlation potential was treated by the generalized gradient approximation (GGA). The system was fully relaxed except for the central layer, which yields to outward relaxations and inward Mn and Ni surface atoms, respectively in the ferromagnetic and antiferromagnetic configurations. The in-plane ferromagnetic configuration was found to be more stable than the antiferromagnetic one by 25 meV/atom. The local magnetic moments of Mn atoms were found to be about 4 μ B , whereas those of the Ni atoms where found to be 0.46 μ B .


2015 ◽  
Vol 233-234 ◽  
pp. 229-232 ◽  
Author(s):  
Vladimir V. Sokolovskiy ◽  
Mikhail A. Zagrebin ◽  
Y.A. Sokolovskaya ◽  
Vasiliy D. Buchelnikov

The structural and magnetic properties of Mn-based stoichiometric Heusler alloys have investigated by means of ab initio calculations in framework of the density functional theory. First principles electronic structure calculations have shown that Mn2NiZ (Z = Ga, In, Sn, Sb) alloys are ferrimagnets with antiparallel alignment between the Mn atoms. The martensitic transition can be realized in Mn2NiGa and Mn2NiSn alloys with tetragonal ratio of 1.27 and 1.16, respectively. Calculated properties are in a good agreement with available experimental data.


2015 ◽  
Vol 17 (14) ◽  
pp. 9454-9464 ◽  
Author(s):  
V. Monteseguro ◽  
P. Rodríguez-Hernández ◽  
H. M. Ortiz ◽  
V. Venkatramu ◽  
F. J. Manjón ◽  
...  

An ab initio study of the structural, elastic and vibrational properties of the lutetium gallium garnet (Lu3Ga5O12) under pressure has been performed in the framework of the density functional theory, up to 95 GPa.


2006 ◽  
Vol 941 ◽  
Author(s):  
Christian Heiliger ◽  
Peter Zahn ◽  
Ingrid Mertig

ABSTRACTThe influence of the structural properties of the leads of planar tunnel junctions on the tunneling current is investigated by means of ab initio electronic structure calculations. In particular, a NM/Fe/MgO/Fe/NM tunnel junction with non-magnetic (NM) leads and finite Fe spacer layers between the leads and the MgO barrier is discussed. The conductance is calculated as a function of the number of Fe layers. The results show that even one iron layer next to the barrier is sufficient to obtain a high spin polarization and a high TMR ratio. This finding implies that similar results can be expected for tunnel junctions with nonmagnetic and even amorphous leads, if states of Δ1 symmetry are provided.


Sign in / Sign up

Export Citation Format

Share Document