New Biomimetic Constructs for Improved In Vivo Circulation of Superparamagnetic Nanoparticles

2008 ◽  
Vol 8 (5) ◽  
pp. 2270-2278 ◽  
Author(s):  
Antonella Antonelli ◽  
Carla Sfara ◽  
Luca Mosca ◽  
Elisabetta Manuali ◽  
Mauro Magnani

Superparamagnetic iron oxide nanoparticles (SPIOs) have been produced and used as a potent and versatile contrast media for magnetic resonance imaging (MRI). Despite a number of efforts to improve their surface chemistry and biocompatibility, the SPIOs half life in blood circulation is very short and they are rapidly taken up by the reticuloendothelial system (RES). In this paper we describe a new method that permits to avoid the rapid clearance of SPIOs. Nanoparticles are made biocompatible by encapsulation into autologous red blood cells. These biomimetic constructs preserve the main properties of the cells that escape RES clearance as well as the properties of the nanoparticles that perform even better than in blood suspension with reduced T2*. These SPIO-loaded RBCs are promising intravascular imaging contrast agents and could also be addressed to selected body compartments by an external magnetic field.

Nanoscale ◽  
2018 ◽  
Vol 10 (34) ◽  
pp. 15967-15979 ◽  
Author(s):  
Lei Gu ◽  
Xue Li ◽  
Jing Jiang ◽  
Gang Guo ◽  
Haoxing Wu ◽  
...  

Peptide modified superparamagnetic iron oxide nanoparticles (SPIONs) have been developed as excellent magnetic resonance imaging (MRI) contrast agents for stem cell labeling and tracking due to their biocompatibility.


Nanoscale ◽  
2016 ◽  
Vol 8 (19) ◽  
pp. 10078-10086 ◽  
Author(s):  
Alessandra Luchini ◽  
Carlo Irace ◽  
Rita Santamaria ◽  
Daniela Montesarchio ◽  
Richard K. Heenan ◽  
...  

Superparamagnetic Iron Oxide Nanoparticles (SPIONs) are performing contrast agents for Magnetic Resonance Imaging (MRI).


2005 ◽  
Vol 2 (2) ◽  
pp. 133-140 ◽  
Author(s):  
D. Mietchen ◽  
H. Keupp ◽  
B. Manz ◽  
F. Volke

Abstract. For more than a decade, Magnetic Resonance Imaging (MRI) has been routinely employed in clinical diagnostics because it allows non-invasive studies of anatomical structures and physiological processes in vivo and to differentiate between healthy and pathological states, particularly of soft tissue. Here, we demonstrate that MRI can likewise be applied to fossilized biological samples and help in elucidating paleopathological and paleoecological questions: Five anomalous guards of Jurassic and Cretaceous belemnites are presented along with putative paleopathological diagnoses directly derived from 3D MR images with microscopic resolution. Syn vivo deformities of both the mineralized internal rostrum and the surrounding former soft tissue can be traced back in part to traumatic events of predator-prey-interactions, and partly to parasitism. Besides, evidence is presented that the frequently observed anomalous apical collar might be indicative of an inflammatory disease. These findings highlight the potential of Magnetic Resonance techniques for further paleontological applications.


2021 ◽  
Vol 10 (11) ◽  
pp. 2461
Author(s):  
José María Mora-Gutiérrez ◽  
María A. Fernández-Seara ◽  
Rebeca Echeverria-Chasco ◽  
Nuria Garcia-Fernandez

Renal magnetic resonance imaging (MRI) techniques are currently in vogue, as they provide in vivo information on renal volume, function, metabolism, perfusion, oxygenation, and microstructural alterations, without the need for exogenous contrast media. New imaging biomarkers can be identified using these tools, which represent a major advance in the understanding and study of the different pathologies affecting the kidney. Diabetic kidney disease (DKD) is one of the most important diseases worldwide due to its high prevalence and impact on public health. However, its multifactorial etiology poses a challenge for both basic and clinical research. Therefore, the use of novel renal MRI techniques is an attractive step forward in the comprehension of DKD, both in its pathogenesis and in its detection and surveillance in the clinical practice. This review article outlines the most promising MRI techniques in the study of DKD, with the purpose of stimulating their clinical translation as possible tools for the diagnosis, follow-up, and monitoring of the clinical impacts of new DKD treatments.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Robert L. Wilson ◽  
Leah Bowen ◽  
Woong Kim ◽  
Luyao Cai ◽  
Stephanie Ellyse Schneider ◽  
...  

AbstractThe biomechanical function of the intervertebral disc (IVD) is a critical indicator of tissue health and pathology. The mechanical responses (displacements, strain) of the IVD to physiologic movement can be spatially complex and depend on tissue architecture, consisting of distinct compositional regions and integrity; however, IVD biomechanics are predominately uncharacterized in vivo. Here, we measured voxel-level displacement and strain patterns in adjacent IVDs in vivo by coupling magnetic resonance imaging (MRI) with cyclic motion of the cervical spine. Across adjacent disc segments, cervical flexion–extension of 10° resulted in first principal and maximum shear strains approaching 10%. Intratissue spatial analysis of the cervical IVDs, not possible with conventional techniques, revealed elevated maximum shear strains located in the posterior disc (nucleus pulposus) regions. IVD structure, based on relaxometric patterns of T2 and T1ρ images, did not correlate spatially with functional metrics of strain. Our approach enables a comprehensive IVD biomechanical analysis of voxel-level, intratissue strain patterns in adjacent discs in vivo, which are largely independent of MRI relaxometry. The spatial mapping of IVD biomechanics in vivo provides a functional assessment of adjacent IVDs in subjects, and provides foundational biomarkers for elastography, differentiation of disease state, and evaluation of treatment efficacy.


Sign in / Sign up

Export Citation Format

Share Document