Effect of Stabilizing Agents on the Synthesis of Palladium Nanoparticles

2017 ◽  
Vol 17 (4) ◽  
pp. 2833-2836 ◽  
Author(s):  
Sang Chul Jung ◽  
Young-Kwon Park ◽  
Ho-Young Jung ◽  
Sang Chai Kim
CrystEngComm ◽  
2015 ◽  
Vol 17 (8) ◽  
pp. 1865-1870 ◽  
Author(s):  
Frieder Kettemann ◽  
Maria Wuithschick ◽  
Gianvito Caputo ◽  
Ralph Kraehnert ◽  
Nicola Pinna ◽  
...  

The consideration of precursor chemistry and growth mechanism enables the reliable synthesis of palladium nanoparticles even in the absence of stabilizing agents.


2019 ◽  
Vol 6 (3) ◽  
pp. 104-107
Author(s):  
Marina Vladimirovna Lebedeva ◽  
Alexey Petrovich Antropov ◽  
Alexander Victorovich Ragutkin ◽  
Nicolay Andreevich Yashtulov

In paper electrode materials with palladium nanoparticles on polymer matrix substrates for energy sources have been formed. Nanocomposites were investigated by atomic force and scanning electron microscopy. The catalytic activity of formed electrodes in the formic acid oxidation reaction was evaluated by voltammetry method.


2014 ◽  
Vol 29 (8) ◽  
pp. 814 ◽  
Author(s):  
GUO Li-Ping ◽  
BAI Jie ◽  
LIANG Hai-Ou ◽  
LI Chun-Ping ◽  
SUN Wei-Yan ◽  
...  

2020 ◽  
Vol 26 (35) ◽  
pp. 4362-4372
Author(s):  
John H. Miller ◽  
Viswanath Das

No effective therapeutics to treat neurodegenerative diseases exist, despite significant attempts to find drugs that can reduce or rescue the debilitating symptoms of tauopathies such as Alzheimer’s disease, Parkinson’s disease, frontotemporal dementia, amyotrophic lateral sclerosis, or Pick’s disease. A number of in vitro and in vivo models exist for studying neurodegenerative diseases, including cell models employing induced-pluripotent stem cells, cerebral organoids, and animal models of disease. Recent research has focused on microtubulestabilizing agents, either natural products or synthetic compounds that can prevent the axonal destruction caused by tau protein pathologies. Although promising results have come from animal model studies using brainpenetrant natural product microtubule-stabilizing agents, such as paclitaxel analogs that can access the brain, epothilones B and D, and other synthetic compounds such as davunetide or the triazolopyrimidines, early clinical trials in humans have been disappointing. This review aims to summarize the research that has been carried out in this area and discuss the potential for the future development of an effective microtubule stabilizing drug to treat neurodegenerative disease.


Cellulose ◽  
2020 ◽  
Vol 27 (6) ◽  
pp. 3335-3357 ◽  
Author(s):  
Manjunatha Kempasiddaiah ◽  
Vishal Kandathil ◽  
Ramesh B. Dateer ◽  
B. S. Sasidhar ◽  
Shivaputra A. Patil ◽  
...  

Biology ◽  
2021 ◽  
Vol 10 (3) ◽  
pp. 233
Author(s):  
Ali A. Badawy ◽  
Nilly A. H. Abdelfattah ◽  
Salem S. Salem ◽  
Mohamed F. Awad ◽  
Amr Fouda

Herein, CuO-NPs were fabricated by harnessing metabolites of Aspergillus niger strain (G3-1) and characterized using UV–vis spectroscopy, XRD, TEM, SEM-EDX, FT-IR, and XPS. Spherical, crystallographic CuO-NPs were synthesized in sizes ranging from 14.0 to 47.4 nm, as indicated by TEM and XRD. EDX and XPS confirmed the presence of Cu and O with weight percentages of 62.96% and 22.93%, respectively, at varied bending energies. FT-IR spectra identified functional groups of metabolites that could act as reducing, capping, and stabilizing agents to the CuO-NPs. The insecticidal activity of CuO-NPs against wheat grain insects Sitophilus granarius and Rhyzopertha dominica was dose- and time-dependent. The mortality percentages due to NP treatment were 55–94.4% (S. granarius) and 70–90% (R. dominica). A botanical experiment was done in a randomized block design. Low CuO-NP concentration (50 ppm) caused significant increases in growth characteristics (shoot and root length, fresh and dry weight of shoot and root, and leaves number), photosynthetic pigments (total chlorophylls and carotenoids), and antioxidant enzymes of wheat plants. There was no significant change in carbohydrate or protein content. The use of CuO-NPs is a promising tool to control grain insects and enhance wheat growth performance.


Sign in / Sign up

Export Citation Format

Share Document