Nd@TiO2 Nanocomposite for Photocatalytic Inactivation of Escherichia coli

2020 ◽  
Vol 20 (3) ◽  
pp. 1447-1453 ◽  
Author(s):  
De-Shuai Zhen ◽  
Xiao-Hu Luo ◽  
De Yang ◽  
Hong-Tao Zou ◽  
Er-Hu Xiong ◽  
...  

In present work, a novel Nd@TiO2 Nanocomposite, synthesized successfully by a facile sol–gel method, reveals significant light-activated antibacterial activity. The X-ray diffraction (XRD), Raman spectroscopy and transmission electron microscopy (TEM) show the anatase phase and globular shape of Nd@TiO2. UV-vis diffuse reflectance spectroscopy and low temperature N2 adsorption (BET) indicate Nd0.02@TiO2 has the narrow band gap (3.0 eV) and a high specific surface area (121.1 m2·g-1). Furthermore, the prepared Nd@TiO2 exhibits unprecedented higher photocatalytic activity than P25 TiO2. In water, Nd@TiO2 has higher inactivation against Escherichia coli (E. coli) bacteria under simulated solar light irradiation 70 min than TiO2, and the highest antibacterial efficiency (91.5%) of E. coli was achieved on Nd0.02@TiO2.

2014 ◽  
Vol 2014 ◽  
pp. 1-7 ◽  
Author(s):  
Guiyun Yi ◽  
Baolin Xing ◽  
Jianbo Jia ◽  
Liwei Zhao ◽  
Yuanfeng Wu ◽  
...  

Macroporous TiO2photocatalyst was synthesized by a facile nanocasting method using polystyrene (PS) spherical particles as the hard template. The synthesized photocatalyst was characterized by transmission electron microscope (TEM), scanning electron microscopy (SEM), thermogravimetry-differential thermogravimetry (TG-DTG), X-ray diffraction (XRD), and N2-sorption. TEM, SEM, and XRD characterizations confirmed that the macroporous TiO2photocatalyst is composed of anatase phase. The high specific surface area of 87.85 m2/g can be achieved according to the N2-sorption analysis. Rhodamine B (RhB) was chosen as probe molecule to evaluate the photocatalytic activity of the TiO2catalysts. Compared with the TiO2materials synthesized in the absence of PS spherical template, the macroporous TiO2photocatalyst sintered at 500°C exhibits much higher activity on the degradation of RhB under the UV irradiation, which can be assigned to the well-structured macroporosity. The macroporous TiO2material presents great potential in the fields of environmental remediation and energy conversion and storage.


2014 ◽  
Vol 2014 ◽  
pp. 1-8 ◽  
Author(s):  
Xiaowen Zou ◽  
Xiaoli Dong ◽  
Limei Wang ◽  
Hongchao Ma ◽  
Xinxin Zhang ◽  
...  

Herein, Ni doped ZnO-TiO2composites were prepared by facile sol-gel approach and were characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM), UV-visible diffuse reflectance spectroscopy (UV-Vis DRS), X-ray photoelectron spectroscopy (XPS), and photoluminescence spectroscopy (PL). The results indicated that the Ni ions can be incorporated into the lattice of TiO2structure and replace Ti. The introduction of Ni expanded light absorption of TiO2to visible region, increased amount of surface hydroxyl groups and physically adsorbed oxygen (as the electronic scavenges), and then enhanced separation rate of photogenerated carriers. The photodegradation test of reactive brilliant blue (KN-R) under simulated solar light indicated that Ni doped ZnO-TiO2composites have better photocatalytic activities, as compared to those of TiO2and ZnO-TiO2.


2019 ◽  
Vol 2019 ◽  
pp. 1-9
Author(s):  
Sijia Gu ◽  
Dan Zhang ◽  
Shirong Luo ◽  
Heng Yang

Exploring a novel and efficient photocatalyst is the key research goal to relieve energy and environmental issues. Herein, Z-scheme heterojunction composites were successfully fabricated by loading g-C3N4 nanosheets (CN) on the surface of Mg1.2Ti1.8O5 nanoflakes (MT) through a simple sol-gel method followed by the calcination method. The crystalline phase, morphologies, specific surface area, and optical and electrochemical performance of the samples were characterized by X-ray diffraction (XRD), field emission scanning electron microscopy (FE-SEM), energy-disperse X-ray spectroscopy (EDS), Brunauer-Emmett-Teller (BET), diffuse reflectance spectroscopy (DRS), and electrochemical measurements. Considering the suitable band structures of the components, the photocatalytic performance was evaluated by photocatalytic H2O splitting and photocatalytic inactivation of Escherichia coli (E. coli). Among the samples, MT/CN-10 (the molar percentage of melamine to as-obtained Mg-Ti gel was 10%) shows superior photocatalytic performance, which the average H2 production rate was 3.57 and 7.24 times higher than those of MT and CN alone. Additionally, the efficiency of inactivating Escherichia coli (E. coli) over MT/CN-10 was 1.95 and 2.06 times higher as compared to pure MT and CN, respectively. The enhancement of the photocatalytic performance was attributed to the advantages of the extremely negative conduction band (CB) of CN and the extremely positive valence band (VB) of MT, the enhanced light absorption, and more efficient photogenerated charge carrier separation.


2015 ◽  
Vol 2015 ◽  
pp. 1-8 ◽  
Author(s):  
Qianzhi Xu ◽  
Xiuying Wang ◽  
Xiaoli Dong ◽  
Chun Ma ◽  
Xiufang Zhang ◽  
...  

S/Zn codoped TiO2nanomaterials were synthesized by a sol-gel method. X-ray diffraction, UV-vis diffuse reflectance spectroscopy, transmission electron microscopy, photoluminescence spectroscopy, and X-ray photoelectron spectroscopy were used to characterize the morphology, structure, and optical properties of the prepared samples. The introduction of Zn and S resulted in significant red shift of absorption edge for TiO2-based nanomaterials. The photocatalytic activity was evaluated by degrading reactive brilliant red X-3B solution under simulated sunlight irradiation. The results showed S/Zn codoped TiO2exhibited higher photocatalytic activity than pure TiO2and commercial P25, due to the photosynergistic effect of obvious visible light absorption, efficient separation of photoinduced charge carriers, and large surface area. Moreover, the content of Zn and S in the composites played important roles in photocatalytic activity of TiO2-based nanomaterials.


2020 ◽  
Vol 20 (9) ◽  
pp. 5418-5425
Author(s):  
Dien-Trung Nguyen ◽  
Cam-Anh Ha ◽  
Tri Nguyen

In this work, titanium oxide catalysts were synthesized by the hydrothermal method from titanium isopropoxide (TTIP) as a precursor under acidic (Ti-A1 and Ti-A2), neutral (Ti-W) and alkaline (Ti-B) media. Characteristics of the catalysts were identified by various methods including X-ray diffraction, Fourier transform infrared spectroscopy, Brunauer–Emmett–Teller adsorption, UV-Vis diffuse reflectance spectroscopy, transmission electron microscopy, and Raman spectroscopy. The phase composition and PZC value of the obtained catalysts depended on the hydrothermal medium and the amount of TTIP: pure anatase and brookite phase formed at neutral and alkaline medium, respectively; whereas acidic medium favored the formation of anatase/rutile mixed phase and anatase phase decreased with the increasing amount of TTIP. The band gap energy of the synthesized catalysts was approximately 3.08–3.23 eV. Photocatalytic activity of synthesized catalysts was surveyed in the degradation of cinnamic acid (CA) solution at various pH in the region from 3.8 to 9.0 under UV irradiation. Photocatalytic oxidation was favorable in an acidic environment. At acidic pH values (3.8 and 5.0), the CA conversion was in the order of Ti-A2 ≥ Ti-A1 > Ti-P25 > Ti-W ≫ Ti-B, whereas it followed Ti-P25 > Ti-A1 > Ti-A2 ≈ Ti-W > Ti-B at pH 7.0 as well as pH 9.0.


2013 ◽  
Vol 14 (3) ◽  
pp. 367-375 ◽  
Author(s):  
L. E. Rananga ◽  
T. Magadzu

Silver doped multi-walled carbon nanotube/β-cyclodextrin (1% Ag-MWCNTs/β-CD) nanocomposite was prepared by reductive pre-treatment of Ag+ on MWCNTs, followed by binding with β-CD. Crystalline structure, morphology and crystallite size estimation were carried out by X-ray diffraction (XRD), Fourier transform infrared spectroscopy, field emission scanning electron microscopy (FE-SEM) and transmission electron microscopy (TEM). The interaction between Escherichia coli (E. coli), ATCC 25922 bacteria and 1% Ag doped MWCNTs/β-CD nanocomposite was investigated by FE-SEM. The antibacterial activity of the nanocomposite was studied by monitoring the absorbance of contaminated water using a UV-vis spectrophotometer. The nanocomposites caused a growth delay in the growth rate of E. coli bacteria. The structural analysis of the bacteria by FE-SEM showed clusters of nanocomposite anchored to the bacterial cell wall during the initial stages of interaction. Results also indicate that treated bacteria show significant damage on the outer membranes, which were recognised by the formation of ‘pits’. The study shows that 1% Ag-MWCNTs/β-CD nanocomposite is bactericidal.


2012 ◽  
Vol 2012 ◽  
pp. 1-8 ◽  
Author(s):  
R. M. Mohamed ◽  
M. A. Barakat

ZnO- nanoparticles were synthesized by a sol-gel technique from and tetraethyl orthosilicate (TEOS). The synthesized samples were further modified by nanosized Pt from H2PtCl6solution through photoassisted deposition (PAD) and impregnation (Img) routes. The obtained samples were characterized by a series of techniques including X-ray diffraction (XRD), UV-Vis diffuse reflectance spectroscopy, N2adsorption, extended X-ray absorption fine structure (EXAFS), and transmission electron microscopy (TEM). The photocatalytic activity of the Pt-ZnO/ was evaluated by photocatalytic degradation of phenol in synthetic wastewater under UV-irradiation. Results obtained revealed that the surface area and the photocatalytic activity of the prepared samples were increased in the order ZnO/ < PAD: Pt-ZnO/ < img: Pt-ZnO/. The surface area decreased from 480 to 460 and 450 m2/g, while the efficiency of the phenol degradation increased from 80 to 85 and 100%, with the ZnO/, Img: Pt-ZnO-, and PAD: Pt-ZnO- samples, respectively.


2013 ◽  
Vol 4 ◽  
pp. 345-351 ◽  
Author(s):  
Kiran Gupta ◽  
R P Singh ◽  
Ashutosh Pandey ◽  
Anjana Pandey

This paper reports the structural and optical properties and comparative photocatalytic activity of TiO2and Ag-doped TiO2nanoparticles against different bacterial strains under visible-light irradiation. The TiO2and Ag-doped TiO2photocatalysts were synthesized by acid catalyzed sol–gel technique and characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM), UV–vis spectroscopy and photoluminescence (PL). The XRD pattern revealed that the annealed sample of TiO2has both anatase and rutile phases while only an anatase phase was found in Ag-doped TiO2nanoparticles. The decreased band-gap energy of Ag-doped TiO2nanoparticles in comparison to TiO2nanoparticles was investigated by UV–vis spectroscopy. The rate of recombination and transfer behaviour of the photoexcited electron–hole pairs in the semiconductors was recorded by photoluminescence. The antimicrobial activity of TiO2and Ag-doped TiO2nanoparticles (3% and 7%) was investigated against both gram positive (Staphylococcus aureus) and gram negative (Pseudomonas aeruginosa,Escherichia coli) bacteria. As a result, the viability of all three microorganisms was reduced to zero at 60 mg/30 mL culture in the case of both (3% and 7% doping) concentrations of Ag-doped TiO2nanoparticles. Annealed TiO2showed zero viability at 80 mg/30 mL whereas doped Ag-TiO27% showed zero viability at 40 mg/30 mL culture in the case ofP. aeruginosaonly.


2017 ◽  
Vol 5 (2) ◽  
pp. 90
Author(s):  
Yudha Ramanda ◽  
Kevin Thomas ◽  
Saifuddin Aziz ◽  
Kurniawan Mauludi ◽  
Eko Sri Kunarti

Synthesis of Fe3O4/SiO2/TiO2 nanocomposite and its application as photocatalyst in Carboxymethyl Cellulose (CMC) photocracking had been conducted. Magnetite preparation was carried out by sono-coprecipitation method. The deposition of SiO2 and TiO2 were performed by sol-gel method under ultrasonic irradiation. All material products were characterized by X-ray diffraction (XRD), Fourier transform infra-red spectrophotometry (FT-IR), and transmission electron microscopy (TEM). The final material product was also analysed by specular reflectance UV-Visible (SR-UV-Vis). The product of photocracking was analysed by gas chromatography – mass spectrometry (GC-MS).The XRD diffractogram and FT-IR spectra confirmed the presence of Fe3O4, SiO2, and anatase phase of TiO2. The TEM image revealed the presence of nanocomposite with core-shell structure. The SR-UV-Vis spectrum was used to determine band gap energy of the photocatalyst and it gave a result of 3.22 eV. The GC chromatogram of photocracking product indicated some major fractions. The MS spectra showed that some major fractions were smaller molecules including methanol, the component of biofuel.


2018 ◽  
Vol 20 (4) ◽  
pp. 66-74
Author(s):  
Mohamadreza Massoudinejad ◽  
Ali Paseban ◽  
Ahmadreza Yazdanbakhsh ◽  
Mohammad Reza Nabid

Abstract An N,S-codoped TiO2/Montmorillonite nanocomposite, as a photocatalyst, was synthesized in the sol-gel method and used for the degradation of ciprofloxacin (Cip) in an aqueous solution. N,S-codoped TiO2/Montmorillonte was characterized by powder X-ray diffraction (XRD), UV-Vis diffuse reflectance spectroscopy (DRS), field emission scanning electron microscopy (FESEM), transmission electron microscope (TEM), and X-ray fluorescence (XRF) analyzes. A central composite design (CCD) was used to optimize the variables for the removal of Cip by the N,S-codoped TiO2/Montmorillonite. A maximum decomposition of 92% of Cip was achieved in optimum conditions. The band gap value for the nanocomposite was 2.77 eV. Moreover, with the use of nanocomposite in the four consecutive runs, the final removal efficiency was 66%. The results show that the N,S-codoped TiO2/ Montmorillonite under simulated sunlight irradiation can be applied as an effective photocatalyst for the removal of Cip from aqueous solutions.


Sign in / Sign up

Export Citation Format

Share Document