A Wearable Biosensor Based on Bienzyme Gel-Membrane for Sweat Lactate Monitoring by Mounting on Eyeglasses

2020 ◽  
Vol 20 (3) ◽  
pp. 1495-1503 ◽  
Author(s):  
Lili Zhang ◽  
Jian Liu ◽  
Zhenling Fu ◽  
Liguo Qi

A new enzymatic biosensor worn on eyeglasses has been developed for low-noise and noninvasive determination of lactate in human sweat during physical exercise. The Os (osmium)-complex, the electron mediator between the enzyme and the electrode, was first immobilized on a flexibly printed carbon electrode. Then, a gel membrane with the stereoscopic reticular structure of lactate oxidase and horseradish peroxidase was casted on the electrode to form the biosensor. Linearity of the biosensor was observed for up to 25 mM lactate in a phosphate buffered solution of pH 7.0. Chemical selectivity was evaluated by adding common interferent species such as ascorbic acid, glucose and uric acid to the lactate. The negligible current interference indicated excellent discriminatory selectivity of the biosensor. Applied to an analysis of the real sweat lactate dynamics of healthy subjects during cycling exercise, the amperometric profiles of the biosensors reflected changes in sweat lactate that depended on physical exercise intensity. Compared with other reported epidermal biosensors attached to the arm or leg, our biosensor not only exhibited a similar current change tendency but also rarely suffered from deformational interference due to their forehead measurement position. Such a successful application of real-time monitoring of sweat lactate means that eyeglass-bound biosensors hold considerable promise in the physical exercise and biomedical fields.

2018 ◽  
Vol 69 (5) ◽  
pp. 390-394
Author(s):  
Martin Florovič ◽  
Róbert Szobolovszký ◽  
Jaroslav Kováč ◽  
Jaroslav Kováč ◽  
Aleš Chvála ◽  
...  

Abstract GaN-based HEMTs’ high potential is deteriorated by self-heating during the operation, this has influence on the electrical properties as well as device reliability. This work is focused on an average channel temperature determination of power AlGaN/GaN HEMT prepared on SiC substrate using quasi-static and pulsed I-V characterization. There was analyzed the drain current change relation to temperature dependent electrical HEMT parameters such as source resistance, threshold voltage, saturation velocity, resp. leakage current which allows to calculate an average channel temperature versus dissipated power for various ambient temperature. Differential temperature of investigated device with and without heatsink was determined. Obtained results were discussed using simulated spatial temperature distribution.


Sign in / Sign up

Export Citation Format

Share Document