Isotherm, Kinetic and Thermodynamic Studies on Adsorption of Bromocresol Purple, Acid Red 66 and Acid Blue 40 Using Activated Carbon

2021 ◽  
Vol 21 (7) ◽  
pp. 4104-4109
Author(s):  
Jong Jib Lee ◽  
Jong Ki Jeon

This study was conducted with a batch reaction to equilibrium isotherm, kinetic and thermodynamic parameters on adsorption of bromocresol purple (BCP), acid red 66 (AR 66) and acid blue 40 (AB 40) from aqueous solution by using activated carbon with nanopores. Freundlich and Temkin isotherm models were used to evaluate the suitability of isotherm for adsorption equilibrium data. The adsorption equilibrium was best fitted by Temkin model. The Freundlich separation factor values indicated that adsorption on the nanoporous activated carbon could effectively treat three dyes. The kinetic analysis of the adsorption process confirmed that it was more consistent with the pseudo second order model. The intraparticle diffusion was rate limiting step. The adsorption process of three dyes were endothermic because they were positive enthalpy values. The free energy values of three dyes decreased with increasing temperature, so that the spontaneity becomes higher with temperature increase. The activation energy value of three dyes were confirmed the physical adsorption.

2019 ◽  
Vol 9 (8) ◽  
Author(s):  
Pezhman Zein Al-Salehin ◽  
Farid Moeinpour ◽  
Fatemeh S. Mohseni-Shahri

Abstract In the present paper, used cigarette filter ash was prepared and used as an active adsorbent to remove As(III) ions from aqueous solutions. The prepared adsorbent structure was identified by scanning electron microscopy analysis, Brunauer–Emmett–Teller method and energy-dispersive X-ray spectroscopy analysis. The influence of contact time, pH, adsorbent dose and initial concentration of As(III) on the removal of As(III) was assessed. Several isotherm models were checked to illustrate the adsorption equilibrium. The adsorption equilibrium data adapted well with the Langmuir isotherm model. The maximum adsorption capacity of 33.33 mg/g was acquired from the Langmuir isotherm. The calculated thermodynamic variables verified that the adsorption process is spontaneous and endothermic.


2014 ◽  
Vol 894 ◽  
pp. 121-124 ◽  
Author(s):  
Yan Qiang Jian ◽  
Ming Yu Li ◽  
Qing Xuan Zeng

A chelating ion exchange fiber containing thioureido groups for the removal of Cr (VI) has been prepared from chloramethylated styrene grafted polypropylene fiber (2.96 mmol/g Cl) reacted with thiourea, batch adsorption experiments are adopted to investigate its adsorption equilibrium properties, Adsorption isotherms at various temperatures were obtained. Langmuir linear equation model can well describe the adsorption equilibrium data suggesting that the adsorption process involves both chemisorption and physisorption. The values of thermodynamic parameters, including ΔH, ΔGand ΔS, indicate that the adsorption of Cr (VI) is a spontaneous, entropy-driven and endothermic process.


Molecules ◽  
2020 ◽  
Vol 25 (13) ◽  
pp. 3023
Author(s):  
Liliana San-Pedro ◽  
Roger Méndez-Novelo ◽  
Emanuel Hernández-Núñez ◽  
Manuel Flota-Bañuelos ◽  
Jorge Medina ◽  
...  

Sanitary landfill leachates usually have characteristics that depend on the region where they are generated and according to the age of the landfill, which is why a unique treatment for their sanitation has not been found. However, the adsorption preceded by the Fenton process has been proven to be highly efficient at removing contaminants. In this study, the adsorptive capacity of two types of activated carbon, granular and powdered, was analyzed to determine which was more efficient in the adsorption stage in the Fenton-adsorption process. Likewise, its behavior was analyzed using three isotherm models (Langmuir, Freundlich and Temkin), testing the raw leachate and the Fenton-treated one with both carbons. The adsorption that is carried out on the carbons is better adjusted to the Freundlich and Temkin models. It concludes that multilayers, through the physical adsorption, carry out the adsorption of pollutants on the surface of the carbons. The results show that, statistically, granular activated carbon is more efficient at removing chemical oxygen demand (COD), and powdered activated carbon removes color better. Finally, an adsorption column was designed for the Fenton-adsorption process that was able to remove 21.68 kgCOD/kg carbon. Removal efficiencies for color and COD were >99%.


1992 ◽  
Vol 37 (2) ◽  
pp. 175-179 ◽  
Author(s):  
Irfan Z. Shirgaonkar ◽  
Hemant S. Joglekar ◽  
Vishwas D. Mundale ◽  
Jyeshtharaj B. Joshi

2021 ◽  
Vol 55 (9-10) ◽  
pp. 1131-1142
Author(s):  
BENGÜ ERTAN ◽  

Stinging nettle was used as lignocellulosic adsorbent for the removal of cationic dye – malachite green (MG), and anionic dye – Congo red (CR), from aqueous solution, without any chemical pretreatment. The adsorption equilibrium data fitted well with the Langmuir model for the adsorption of both dyes, with the calculated maximum adsorption capacity of 270.27 mgg-1 and 172.14 mgg-1 for MG and CR, respectively. The adsorption process was controlled by the pseudo-second-order model in the adsorption of MG and by the pseudo-first-order model in the adsorption of CR. The thermodynamics modelling displayed that the process was spontaneous and endothermic. The π–π electron–donor interaction, hydrogen bonds and pore diffusion may also be effective, besides electrostatic interaction between the adsorbate and the adsorbent in the mechanism of MG and CR uptake.


2018 ◽  
Vol 77 (11) ◽  
pp. 2555-2565 ◽  
Author(s):  
Xiao Liu ◽  
Yibei Wan ◽  
Penglei Liu ◽  
Lei Zhao ◽  
Weihua Zou

Abstract Salix psammophila (SP), a solid waste abundantly available, was applied as a precursor to prepare the activated carbon by chemical activation method using phosphoric acid (H3PO4). Response surface methodology based on Box-Behnken design was used to optimize the prepared conditions of activated carbon. The effects of concentration of H3PO4, activation temperature and activation time on the adsorption performance (expressed by the adsorption capacity of ciprofloxacin hydrochloride (CIP) and norfloxacin (NOR)) were investigated. The optimum conditions were obtained using H3PO4 concentration of 67.83%, activation temperature of 567.44 °C and activation time of 86.61 min. The optimum activated carbon (SPAC) was characterized with scanning electron microscopy-energy dispersive X-ray spectroscopy (SEM-EDS), Brunauer–Emmett–Teller (BET) and Fourier transform infrared spectroscopy (FTIR). The adsorption behavior of CIP and NOR on SPAC was carried out and the mechanisms for the adsorption process were proposed. The equilibrium data were fitted by the Freundlich and Langmuir isotherm models, which resulted in 251.9 mg/g and 366.9 mg/g of the maximum monolayer adsorption for CIP and NOR at 25 °C, respectively. The best fitted kinetic model was pseudo-second-order, implying that chemisorption dominated in the adsorption process. This study indicated that activated carbon based on Salix psammophila (SPAC) was an excellent adsorbent for removing fluoroquinolone antibiotics from aqueous solutions.


2021 ◽  
Vol 47 (1) ◽  
pp. 95-103
Author(s):  
Ivone Vanessa Jurado Dávila ◽  
Júlia Viola Matzenbacher Hübner ◽  
Keila Guerra Pacheco Nunes ◽  
Liliana Amaral Féris

In this work, it was studied the caffeine removal through the adsorption on granular activated carbon (CAG). The influence of pH, contact time and CAG dosage were analyzed by batch experiments. Adsorption Kinetic was studied using the models of pseudo-first-order and pseudo-second-order. The adsorption equilibrium data was studied with Langmuir, Freundlich, and Redlich-Peterson isotherm models. The process thermodynamic also was studied. It was obtained 88 % of removal under the experimental conditions of natural pH, 60 min of adsorption and 8 g.L-1 of CAG. The kinetic model that showed the best results was the pseudo-secondorder and Langmuir was the isotherm model that best described the adsorption behavior. The thermodynamic parameters obtained showed a spontaneous, endothermic and reversible process. The desorption efficiency also was studied by regenerant solvents. The best results were obtained using a solvent combination of ethyl acetate, ethanol, and water (50:25:25), and it was obtained a caffeine removal of 57 %, achieving 70 % when a new solution is used in each regeneration step.


2019 ◽  
Vol 2019 ◽  
pp. 1-9 ◽  
Author(s):  
Luyen T. Tran ◽  
Hoang V. Tran ◽  
Thu D. Le ◽  
Giang L. Bach ◽  
Lam D. Tran

In this paper, Fe3O4/graphene oxide/chitosan (FGC) nanocomposite was synthesized using coprecipitation method for application to removal of nickel ion (Ni(II)) from aqueous solution by adsorption process. To determine residue Ni(II) ions concentration in aqueous solution after adsorption process, we have used UV-Vis spectrophotometric method, which is an effective and exact method for Ni(II) monitoring at low level by using dimethylglyoxime (DMG) as a complex reagent with Ni(II), which has a specific adsorption peak at the wavelength of 550 nm on UV-Vis spectra. A number of factors that influence Ni(II) ions adsorption capacity of FGC nanocomposite such as contact time, adsorption temperature, and adsorbent dosage were investigated. Results showed that the adsorption equilibrium is established after 70 minutes with the adsorbent dosage of 0.01 g.mL−1 at 30°C (the room temperature). The thermodynamic and kinetic parameters of this adsorption including free enthalpy change (∆G0), enthalpy change (∆H0), entropy change (∆S0), and reaction order with respect to Ni(II) ions were also determined. The Ni(II) ions adsorption equilibrium data are fitted well to the Langmuir isotherm and the maximum monolayer capacity (qmax) is 12.24 mg.g−1. Moreover, the FGC adsorbent can be recovered by an external magnet; in addition, it can be regenerated. The reusability of FGC was tested and results showed that 83.08% of removal efficiency was obtained after 3 cycles. The synthesized FGC nanocomposite with many advantages is a promising material for removal of heavy metal ions from aqueous solution to clean up the environment.


Sign in / Sign up

Export Citation Format

Share Document