scholarly journals Adsorption isotherm and thermodynamic studies of As(III) removal from aqueous solutions using used cigarette filter ash

2019 ◽  
Vol 9 (8) ◽  
Author(s):  
Pezhman Zein Al-Salehin ◽  
Farid Moeinpour ◽  
Fatemeh S. Mohseni-Shahri

Abstract In the present paper, used cigarette filter ash was prepared and used as an active adsorbent to remove As(III) ions from aqueous solutions. The prepared adsorbent structure was identified by scanning electron microscopy analysis, Brunauer–Emmett–Teller method and energy-dispersive X-ray spectroscopy analysis. The influence of contact time, pH, adsorbent dose and initial concentration of As(III) on the removal of As(III) was assessed. Several isotherm models were checked to illustrate the adsorption equilibrium. The adsorption equilibrium data adapted well with the Langmuir isotherm model. The maximum adsorption capacity of 33.33 mg/g was acquired from the Langmuir isotherm. The calculated thermodynamic variables verified that the adsorption process is spontaneous and endothermic.

Materials ◽  
2019 ◽  
Vol 12 (6) ◽  
pp. 942 ◽  
Author(s):  
Huo-Xi Jin ◽  
Hong Xu ◽  
Nan Wang ◽  
Li-Ye Yang ◽  
Yang-Guang Wang ◽  
...  

The ability to remove toxic heavy metals, such as Pb(II), from the environment is an important objective from both human-health and ecological perspectives. Herein, we describe the fabrication of a novel carboxymethylcellulose-coated metal organic material (MOF-5–CMC) adsorbent that removed lead ions from aqueous solutions. The adsorption material was characterized by Fourier-transform infrared spectroscopy, X-ray diffractometry, scanning electron microscopy, and X-ray photoelectron spectroscopy. We studied the functions of the contact time, pH, the original concentration of the Pb(II) solution, and adsorption temperature on adsorption capacity. MOF-5–CMC beads exhibit good adsorption performance; the maximum adsorption capacity obtained from the Langmuir isotherm-model is 322.58 mg/g, and the adsorption equilibrium was reached in 120 min at a concentration of 300 mg/L. The adsorption kinetics is well described by pseudo-second-order kinetics, and the adsorption equilibrium data are well fitted to the Langmuir isotherm model (R2 = 0.988). Thermodynamics experiments indicate that the adsorption process is both spontaneous and endothermic. In addition, the adsorbent is reusable. We conclude that MOF-5–CMC is a good adsorbent that can be used to remove Pb(II) from aqueous solutions.


2014 ◽  
Vol 2014 ◽  
pp. 1-12 ◽  
Author(s):  
Bayram Kizilkaya ◽  
A. Adem Tekınay

Removal of lead (II) from aqueous solutions was studied by using pretreated fish bones as natural, cost-effective, waste sorbents. The effect of pH, contact time, temperature, and metal concentration on the adsorption capacities of the adsorbent was investigated. The maximum adsorption capacity for Pb (II) was found to be 323 mg/g at optimum conditions. The experiments showed that when pH increased, an increase in the adsorbed amount of metal of the fish bones was observed. The kinetic results of adsorption obeyed a pseudo second-order model. Freundlich and Langmuir isotherm models were applied to experimental equilibrium data of Pb (II) adsorption and the value ofRLfor Pb (II) was found to be 0.906. The thermodynamic parameters related to the adsorption process such asEa,ΔG°,ΔH°, andΔS° were calculated andEa,ΔH°, andΔS° were found to be 7.06, 46.01 kJ mol−1, and 0.141 kJ mol−1K−1for Pb (III), respectively.ΔH° values (46.01 kJmol−1) showed that the adsorption mechanism was endothermic. Weber-Morris and Urano-Tachikawa diffusion models were also applied to the experimental equilibrium data. The fish bones were effectively used as sorbent for the removal of Pb (II) ions from aqueous solutions.


2011 ◽  
Vol 354-355 ◽  
pp. 33-36
Author(s):  
Jian Yun Li ◽  
Quan Xian Hua ◽  
Jun Ling Niu ◽  
Jian Wei Tang ◽  
Ke Xu

The adsorption of copper in aqueous solutions by steel slag was studied in batch adsorption experiments. The adsorption equilibrium data fitted best with Langmuir and Freundlich equations. The adsorption was preferential type. A comparison of the kinetics models on the apparent adsorption rate showed that the adsorption system was best described by the pseudo-second-order kinetics. The adsorption rate was controlled by both liquid film diffusion and intraparticle dispersion.


2018 ◽  
Vol 56 (2) ◽  
pp. 158
Author(s):  
Truong Dang Le ◽  
Hoang Vinh Tran ◽  
Le Dieu Thu ◽  
Tran Ngoc Quang ◽  
Nguyen Thi Minh Hang ◽  
...  

In this research, the potential of chitosan/Fe3O4/graphene oxide (CS/Fe3O4/GO) nanocomposite for efficient removal of Fe(III) a cationic metal ion from aqueous solutions was investigated. The synthesized CS/Fe3O4/GO was characterized by XRD, VSM and SEM techniques. Also, the various parameters affecting Fe3+ removal were investigated. Fe(III) adsorption equilibrium data were fitted well to the Langmuir isotherm and the maximum monolayer capacity (qmax), was calculated from the Langmuir as 6.5 mg.g-1. The results show that, CS/Fe3O4/GO nanocomposite, can be used as a cheap and efficient adsorbent for removal of heavy metal ions from aqueous solutions.


2021 ◽  
Vol 55 (9-10) ◽  
pp. 1131-1142
Author(s):  
BENGÜ ERTAN ◽  

Stinging nettle was used as lignocellulosic adsorbent for the removal of cationic dye – malachite green (MG), and anionic dye – Congo red (CR), from aqueous solution, without any chemical pretreatment. The adsorption equilibrium data fitted well with the Langmuir model for the adsorption of both dyes, with the calculated maximum adsorption capacity of 270.27 mgg-1 and 172.14 mgg-1 for MG and CR, respectively. The adsorption process was controlled by the pseudo-second-order model in the adsorption of MG and by the pseudo-first-order model in the adsorption of CR. The thermodynamics modelling displayed that the process was spontaneous and endothermic. The π–π electron–donor interaction, hydrogen bonds and pore diffusion may also be effective, besides electrostatic interaction between the adsorbate and the adsorbent in the mechanism of MG and CR uptake.


2021 ◽  
Vol 47 (1) ◽  
pp. 95-103
Author(s):  
Ivone Vanessa Jurado Dávila ◽  
Júlia Viola Matzenbacher Hübner ◽  
Keila Guerra Pacheco Nunes ◽  
Liliana Amaral Féris

In this work, it was studied the caffeine removal through the adsorption on granular activated carbon (CAG). The influence of pH, contact time and CAG dosage were analyzed by batch experiments. Adsorption Kinetic was studied using the models of pseudo-first-order and pseudo-second-order. The adsorption equilibrium data was studied with Langmuir, Freundlich, and Redlich-Peterson isotherm models. The process thermodynamic also was studied. It was obtained 88 % of removal under the experimental conditions of natural pH, 60 min of adsorption and 8 g.L-1 of CAG. The kinetic model that showed the best results was the pseudo-secondorder and Langmuir was the isotherm model that best described the adsorption behavior. The thermodynamic parameters obtained showed a spontaneous, endothermic and reversible process. The desorption efficiency also was studied by regenerant solvents. The best results were obtained using a solvent combination of ethyl acetate, ethanol, and water (50:25:25), and it was obtained a caffeine removal of 57 %, achieving 70 % when a new solution is used in each regeneration step.


2016 ◽  
Vol 2016 ◽  
pp. 1-15 ◽  
Author(s):  
Ingrid Johanna Puentes-Cárdenas ◽  
Griselda Ma. Chávez-Camarillo ◽  
César Mateo Flores-Ortiz ◽  
María del Carmen Cristiani-Urbina ◽  
Alma Rosa Netzahuatl-Muñoz ◽  
...  

The adsorption performance of a Cu-TiO2composite for removing acid blue 80 (AB80) dye from aqueous solutions was investigated in terms of kinetics, equilibrium, and thermodynamics. The effect of operating variables, such as solution pH, initial dye concentration, contact time, and temperature, on AB80 adsorption was studied in batch experiments. AB80 adsorption increased with increasing contact time, initial dye concentration, and temperature and with decreasing solution pH. Modeling of adsorption kinetics showed good agreement of experimental data with the pseudo-second-order kinetics model. The experimental equilibrium data for AB80 adsorption were evaluated for compliance with different two-parameter, three-parameter, and four-parameter isotherm models. The Langmuir isotherm model best described the AB80 adsorption equilibrium data. The thermodynamic data revealed that the AB80 adsorption process was endothermic and nonspontaneous. Kinetics, equilibrium, and thermodynamic results indicate that Cu-TiO2adsorbs AB80 by a chemical sorption reaction.


2018 ◽  
Vol 3 (1) ◽  
pp. 13
Author(s):  
Muhammad Ali Zulfikar ◽  
Afdal Bahri ◽  
Muhamad Nasir

<p>The main objective of this study is to investigate the isotherm sorption of humic acid (HA) from aqueous solution onto dual nanofiber PMMA/PVDF. Batch adsorption experiments were carried out using HA solution as an adsorbate under variety of concentration in the range of 50-200 mg/L. The experimental data were analyzed by the Langmuir, Freundlich and Sips models of adsorption. The experimental results indicate that, the adsorption capacity of HA adsorption increases with an increase in the HA concentrations. The adsorption of HA onto dual nanofiber PMMA/PVDF agrees well with the Langmuir isotherm models with the maximum adsorption capacity was found to be 137.40 mg g<sup>-1</sup> at concentration of 100 mg L<sup>-1</sup>.</p>


2018 ◽  
Vol 8 (10) ◽  
pp. 1807 ◽  
Author(s):  
Sarai Ramos-Vargas ◽  
Ruth Alfaro-Cuevas-Villanueva ◽  
Rafael Huirache-Acuña ◽  
Raúl Cortés-Martínez

The contamination of groundwater by arsenic and fluoride is a major problem worldwide, causing diseases in the population that uses these waters for their consumption. Therefore, the removal of these types of pollutants from groundwater is a very important issue. In this work, the removal of arsenate and fluoride from aqueous solutions by using aluminum-modified guava seeds (Al-GSs) was evaluated. Batch-type adsorption experiments were carried out with aqueous solutions of As(V) and F− and Al-GSs. The kinetic and equilibrium parameters of adsorption were determined, as well as the effects of adsorbent dose and pH. The adsorbent was characterized by scanning electron microscopy and infrared spectroscopy in order to determine its morphology and the functional groups present in the material. The results showed that hydroxyl and carboxyl are the main groups involved in the adsorption of As(V) and F−. The fluoride adsorption kinetics indicate that the equilibrium time was reached at 150 min and it can be described by the Lagergren model, while for As(V) the equilibrium time was lower (120 min) and the kinetic data were fitted well to the pseudo-second-order model. The Langmuir-Freundlich model can describe the adsorption equilibrium data in all cases. The fluoride adsorption capacity by Al-GS was 0.3445 mg/g, and for As(V) it was 4 mg/g. It can be established that the removal of arsenates and fluoride in Al-GSs is due to chemisorption on a heterogeneous surface.


Sign in / Sign up

Export Citation Format

Share Document