scholarly journals Selection of the Activated Carbon Type for the Treatment of Landfill Leachate by Fenton-Adsorption Process

Molecules ◽  
2020 ◽  
Vol 25 (13) ◽  
pp. 3023
Author(s):  
Liliana San-Pedro ◽  
Roger Méndez-Novelo ◽  
Emanuel Hernández-Núñez ◽  
Manuel Flota-Bañuelos ◽  
Jorge Medina ◽  
...  

Sanitary landfill leachates usually have characteristics that depend on the region where they are generated and according to the age of the landfill, which is why a unique treatment for their sanitation has not been found. However, the adsorption preceded by the Fenton process has been proven to be highly efficient at removing contaminants. In this study, the adsorptive capacity of two types of activated carbon, granular and powdered, was analyzed to determine which was more efficient in the adsorption stage in the Fenton-adsorption process. Likewise, its behavior was analyzed using three isotherm models (Langmuir, Freundlich and Temkin), testing the raw leachate and the Fenton-treated one with both carbons. The adsorption that is carried out on the carbons is better adjusted to the Freundlich and Temkin models. It concludes that multilayers, through the physical adsorption, carry out the adsorption of pollutants on the surface of the carbons. The results show that, statistically, granular activated carbon is more efficient at removing chemical oxygen demand (COD), and powdered activated carbon removes color better. Finally, an adsorption column was designed for the Fenton-adsorption process that was able to remove 21.68 kgCOD/kg carbon. Removal efficiencies for color and COD were >99%.

2021 ◽  
Vol 21 (7) ◽  
pp. 4104-4109
Author(s):  
Jong Jib Lee ◽  
Jong Ki Jeon

This study was conducted with a batch reaction to equilibrium isotherm, kinetic and thermodynamic parameters on adsorption of bromocresol purple (BCP), acid red 66 (AR 66) and acid blue 40 (AB 40) from aqueous solution by using activated carbon with nanopores. Freundlich and Temkin isotherm models were used to evaluate the suitability of isotherm for adsorption equilibrium data. The adsorption equilibrium was best fitted by Temkin model. The Freundlich separation factor values indicated that adsorption on the nanoporous activated carbon could effectively treat three dyes. The kinetic analysis of the adsorption process confirmed that it was more consistent with the pseudo second order model. The intraparticle diffusion was rate limiting step. The adsorption process of three dyes were endothermic because they were positive enthalpy values. The free energy values of three dyes decreased with increasing temperature, so that the spontaneity becomes higher with temperature increase. The activation energy value of three dyes were confirmed the physical adsorption.


Energies ◽  
2021 ◽  
Vol 14 (15) ◽  
pp. 4483
Author(s):  
Yuyingnan Liu ◽  
Xinrui Xu ◽  
Bin Qu ◽  
Xiaofeng Liu ◽  
Weiming Yi ◽  
...  

In this study, corn cob was used as raw material and modified methods employing KOH and KMnO4 were used to prepare activated carbon with high adsorption capacity for mercury ions. Experiments on the effects of different influencing factors on the adsorption of mercury ions were undertaken. The results showed that when modified with KOH, the optimal adsorption time was 120 min, the optimum pH was 4; when modified with KMnO4, the optimal adsorption time was 60 min, the optimal pH was 3, and the optimal amount of adsorbent and the initial concentration were both 0.40 g/L and 100 mg/L under both modified conditions. The adsorption process conforms to the pseudo-second-order kinetic model and Langmuir model. Scanning electron microscopy and energy-dispersive X-ray spectroscopy (SEM-EDS), Fourier transform infrared spectroscopy (FTIR), X-ray photoelectron spectroscopy (XPS) and Zeta potential characterization results showed that the adsorption process is mainly physical adsorption, surface complexation and ion exchange.


Author(s):  
Eman Hashim Khader ◽  
Thamer Jassim Mohammed ◽  
Nourollah Mirghaffari ◽  
Ali Dawood Salman ◽  
Tatjána Juzsakova ◽  
...  

AbstractThis paper studied the adsorption of chemical oxygen demand (COD), oil and turbidity of the produced water (PW) which accompanies the production and reconnaissance of oil after treating utilizing powdered activated carbon (PAC), clinoptilolite natural zeolite (CNZ) and synthetic zeolite type X (XSZ). Moreover, the paper deals with the comparison of pollutant removal over different adsorbents. Adsorption was executed in a batch adsorption system. The effects of adsorbent dosage, time, pH, oil concentration and temperature were studied in order to find the best operating conditions. The adsorption isotherm models of Langmuir, Freundlich and Temkin were investigated. Using pseudo-first-order and pseudo-second-order kinetic models, the kinetics of oil sorption and the shift in COD content on PAC and CNZ were investigated. At a PAC adsorbent dose of 0.25 g/100 mL, maximum oil removal efficiencies (99.57, 95.87 and 99.84 percent), COD and total petroleum hydrocarbon (TPH) were identified. Moreover, when zeolite X was used at a concentration of 0.25 g/100 mL, the highest turbidity removal efficiency (99.97%) was achieved. It is not dissimilar to what you would get with PAC (99.65 percent). In comparison with zeolites, the findings showed that adsorption over PAC is the most powerful method for removing organic contaminants from PW. In addition, recycling of the consumed adsorbents was carried out in this study to see whether the adsorbents could be reused. Chemical and thermal treatment will effectively regenerate and reuse powdered activated carbon and zeolites that have been eaten. Graphic abstract


2016 ◽  
Vol 5 (1) ◽  
pp. 52-57
Author(s):  
Irvan ◽  
Olyvia Putri Wardhani ◽  
Nurul Aini ◽  
Iriany

Crude palm oil (CPO) is the richest natural source of carotenoids which gives the reddish-orange color in crude palm oil. The reddish color in  unprocessed palm oil is disliked by consumer. This research is aimed to adsorb the β–carotene from the CPO using activated carbon, then the kinetics, isotherm models and thermodynamics data of the adsorption process were obtained. The main materials used in this research were CPO and activated carbon. The observed parameters were final concentration  and the amounts of adsorbed β–carotene in activated carbon. The adsorption process was conducted by mixing the adsorbent with CPO with the variation of adsorbent: CPO (w/w) ratio = 1 : 3; 1 : 4; 1 : 5 and 1 : 6 with mixing  speed 120 rpm and the temperature of 40, 50 and 60 oC. The sample of CPO and activated carbon was analyzed at every 2 minutes until the equilibrium was achieved. The final concentration of the unadsorbed β–carotene was analyzed using UV-Vis spectrophotometer. The results showed that the more CPO used in the process, the lower the adsorption percentage. The higher the adsorption temperature, the higher  adsorption percentage. Moreover, the maximum adsorption percentage was 95.108%  obtained at ratio 1 : 3 and T = 60 oC. The adsorption isotherm model which fit with the β–carotene adsorption at T = 60 oC was Langmuir model with the correlation coefficient of 0.959. The adsorption kinetics model which fit with the β–carotene adsorption was the second order kinetics model with the correlation coefficient of 0.998. The value of free energy Gibbs (ΔG) = -24,482.484 ; -24,708.059 and -24,933.634 J/mol for each temperature respectively, value of entropy changes (ΔS) = 22.557 J/mol K, and value of enthalpy changes (ΔH) = -17,421.987 J/mol.


2000 ◽  
Vol 41 (1) ◽  
pp. 231-235 ◽  
Author(s):  
R.M. Ramíirez Zamora ◽  
A. Durán Moreno ◽  
M.T. Ortade Velásquez ◽  
I. Monje Ramírez

This work compares two pre-treatments (coagulation-flocculation process (CF) and the Fenton oxidation Method (FE)) of the activated carbon adsorption process (AC) to optimize the removal of the organic compounds in landfill leachates. The content of organic compounds was measured in terms of three global parameters: colour, chemical oxygen demand (COD) and dissolved organic carbon (DOC). The result obtained in discontinuous reactor conditions showed an increase in colour removal from 1.5 to 2.0 times and a decrease of COD between 0.3 to 0.5 times for the FE-AC treatment, in relation to the CF-AC treatment. On the other hand, the data obtained in continuous reactor conditions (packed columns) showed that the column fed with leachate CF exhibited operation times 1.3 times longer and a better physiochemical quality in the filtrate (COD and colour) than the one fed with the FE leachate. Nevertheless, the adsorption capacities in the colour removal column of COD and DOC were higher for the FE leachate.


2017 ◽  
Vol 76 (7) ◽  
pp. 1697-1705 ◽  
Author(s):  
Tiecheng Guo ◽  
Sicong Yao ◽  
Hengli Chen ◽  
Xin Yu ◽  
Meicheng Wang ◽  
...  

Sewage sludge-based activated carbon is proved to be an efficient and low-cost adsorbent in treatment of various industrial wastewaters. The produced carbon had a well-developed pore structure and relatively low Brunauer–Emmett–Teller (BET) surface area. Adsorptive capacity of typical pollutants, i.e. copper Cu(II) and methylene blue (MB) on the carbon was studied. Adsorptions were affected by the initial solution pH, contact time and adsorbent dose. Results showed that adsorption of Cu(II) and MB on the produced carbon could reach equilibrium after 240 min. The average removal rate for Cu(II) on the carbon was high, up to 97% in weak acidic conditions (pH = 4–6) and around 98% for MB in a very wide pH range (pH = 2–12). The adsorption kinetics were well fitted by the pseudo-second order model, and both Langmuir and Freundlich isotherm models could well describe the adsorption process at room temperature. The theoretical maximum adsorption capacities of Cu(II) and MB on sewage sludge-based activated carbon were 114.94 mg/g and 125 mg/g, respectively. Compared with commercial carbon, the sewage sludge-based carbon was more suitable for heavy metal ions’ removal than dyes’.


2021 ◽  
Vol 37 (4) ◽  
pp. 922-927
Author(s):  
A. Kistan ◽  
V. Kanchana ◽  
N. K. Geetha ◽  
G. Infant Sujitha

The following study explains that the adsorption efficiency of activated carbon used by Groundnut foliage and groundnut husk for the deportation of COD (Chemical Oxygen demand) from groundwater collected from in and around industrial areas of Vellore district was investigated with different activating conditions (Activating agent- KOH, ZnCl2 and H3PO4; Impregnation ratio-1:1,1:2,1:2; and activation temeperture-500-700°C. The activated carbon prepared based on optimized condition has well-developed pore structure and functional groups which is confirmed from SEM image and FTIR analysis respectively. The adsorption equilibrium was reached in 240 min with the isotherm data fitted well in both the model such as Langmuir model and Freundlich’s model indicating chemisorption’s adsorption for the activated carbon. Moreover, the adsorption process was exothermic accompanied by a decrease in irregularity. Furthermore, the adsorption kinetic study indicated that the adsorption process of the prepared sample follows the pseudo-second-order kinetic model compare to the pseudo-first -order kinetic model


2016 ◽  
Vol 18 (2) ◽  
pp. 402-415 ◽  

<div> <p>Agriculture wastes like sugarcane bagasse are available in large quantities in Egypt. Various adsorbents from natural materials, industrial waste materials, agricultural by-products, and biomass based activated carbon can be used in the removal of various dyes. Raw Bagasse pith (RBP) was used to prepare activated carbon (AC) using phosphoric acid (H<sub>3</sub>PO<sub>4</sub>) as a chemical activating agent. C The raw BP and the synthesized adsorbent were characterized by Fourier transform infrared (FTIR) spectroscopy and scanning electron microscope (SEM). The effectiveness of AC prepared in adsorption of methylene blue (MB) has been studied as a function of adsorbent type, initial dye concentration and contact time. The effects of the initial dye concentration and contact time were evaluated. Adsorption isotherm models - Langmuir, Freundlich and Temkin were used to simulate the equilibrium data. Langmuir equation was found to have the highest value of R<sup>2</sup> compared with other models. Furthermore, it was found that sugarcane bagasse have a high adsorptive capacity towards MB.</p> </div> <p>&nbsp;</p>


2014 ◽  
Vol 1073-1076 ◽  
pp. 955-959
Author(s):  
Ruo Zheng Li ◽  
Hong Yang ◽  
Xin Jin

Lignite activated carbon was provided through lignite which is treated specially. The adsorption capacity and mechanism of COD from Coal gasification wastewater by lignite activated carbon have been studied.The adsorption capacities of lignite activated carbon at different times were obtained by concentration of COD in the remainder solution. Three simplified kinetic models: pseudo-first-order, pseudo-second-order, intraparticle diffusion equations were adopted to examine the mechanism of the adsorption process. The results showed that the adsorption can be expressed by the pseudo-second-order model. The adsorption balance capacity was obtained as 50.8mg·g-1 (298K), and the adsorption balance capacity decreased with increasing of temperature, which showed that the adsorption process was exothermic. The adsorption activation energy (Ea) was calculated as 5.76kJ·mol-1, and it showed that the adsorption process was Physical adsorption. This study explored new treatment channels for lignite comprehensive utilization..


2012 ◽  
Vol 610-613 ◽  
pp. 1710-1717
Author(s):  
Gui Zhong Zhou ◽  
Xuan Wang ◽  
Zhao Feng Wang ◽  
Shu Qing Pan ◽  
Shao Xiang Li

The activated carbon fiber(ACF) electrodes were prepared for electrosorption desalination. The electrodes were analyzed using scanning electron microscope (SEM), and the desalting efficiency was represented by the removal rate of Cl-. As a result, desalting efficiency decreases with increasing initial concentration of Cl-, whereas the total adsorption capacity increases. The most suitable voltage for electrosorption desalination is 1.2 ~ 1.4V. The electrosorption desalination achieves the best results while the distance between two electrodes is 1.0cm. Electrosorption plays a more important role in the adsorption process compared with physical adsorption. The removal rate of Cl- is obviously improved by using ACF electrode modified by HNO3 and KOH and desalination ratio of the electrode treated with KOH is increased by 16.5%. Therefore, the ACF electrode would be suitable for using in the application of electrosorption desalination.


Sign in / Sign up

Export Citation Format

Share Document