Anticorrosion Protection of TiO2 Nanofilm on the Surface of Carbon Steel

2021 ◽  
Vol 21 (10) ◽  
pp. 5253-5259
Author(s):  
Yu Zhang ◽  
Ruijian Song ◽  
Xiang Zhang

Carbon steel (CS) is the preferred base material for construction in various industries due to its low cost; however, industrial equipment failure caused by carbon steel corrosion can lead to several environmental risks and safety hazards, thus limiting its application scenarios. Enhancing the corrosion resistance of carbon steel and reducing the maintenance cost of carbon steel substrate have become a hot topic of current research. Therefore, in this study, a zinc oxide/polyaniline-titanium dioxide composite film (ZnO/PAni-TiO2) with long-lasting photogenerated cathodic protection was constructed based on the photoelectric conversion properties of TiO2. This new TiO2 composite film, which can avoid photogenerated electron–hole complexation, significantly enhanced the photoelectric conversion efficiency of TiO2, thereby decreasing the anodic corrosion current density of low carbon steel and enhancing the cathodic protection of carbon steel. Hence, it is expected to provide a new direction for the preparation of corrosion-resistant TiO2-laminated carbon steel nanofilms.

2019 ◽  
Vol 24 (4) ◽  
pp. 51-58
Author(s):  
Le Hong Quan ◽  
Nguyen Van Chi ◽  
Mai Van Minh ◽  
Nong Quoc Quang ◽  
Dong Van Kien

The study examines the electrochemical properties of a coating based on water sodium silicate and pure zinc dust (ZSC, working title - TTL-VN) using the Electrochemical Impedance Spectra (EIS) with AutoLAB PGSTAT204N. The system consists of three electrodes: Ag/AgCl (SCE) reference electrode in 3 M solution of KCl, auxiliary electrode Pt (8x8 mm) and working electrodes (carbon steel with surface treatment up to Sa 2.5) for determination of corrosion potential (Ecorr) and calculation of equivalent electric circuits used for explanation of impedance measurement results. It was shown that electrochemical method is effective for study of corrosion characteristics of ZSC on steel. We proposed an interpretation of the deterioration over time of the ability of zinc particles in paint to provide cathodic protection for carbon steel. The results show that the value of Ecorr is between -0,9 and -1,1 V / SCE for ten days of diving. This means that there is an electrical contact between the zinc particles, which provides good cathodic protection for the steel substrate and most of the zinc particles were involved in the osmosis process. The good characteristics of the TTL-VN coating during immersion in a 3,5% NaCl solution can also be explained by the preservation of corrosive zinc products in the coating, which allows the creation of random barrier properties.


2011 ◽  
Vol 686 ◽  
pp. 569-573 ◽  
Author(s):  
Ming Feng Tan ◽  
Wan Chang Sun ◽  
Lei Zhang ◽  
Quan Zhou ◽  
Jin Ding

Electroless Ni-P coating containing ZrO2particles was successfully co-deposited on low carbon steel substrate. The surface and cross-sectional micrographs of the composite coatings were observed with scanning electron microscopy (SEM). And the chemical composition of the coating was analyzed with energy dispersive spectroscopy (EDS). The oxidation resistance was evaluated by weight gains during high temperature oxidation test. The results showed that the embedded ZrO2particles with irregular shape uniformly distributed in the entire Ni-P matrix, and the coating showed a good adhesion to the substrate. The weight gain curves of Ni-P-ZrO2composite coatings and Ni-P coating at 923K oxidation experiments were in accordance with . The ZrO2particles in Ni-P matrix could significantly enhance the high temperature oxidation resistance of the carbon steel substrate as compared to pure Ni-P coating.


2013 ◽  
Vol 734-737 ◽  
pp. 2269-2272
Author(s):  
Hong Mei Zhu ◽  
Shu Mei Lei ◽  
Tong Chun Kuang

In this paper, a low carbon steel was used as the substrate to prepare the carbon nanostructural materials by the oxygen-acetylene flame method. The experimental results show that the composite products including nodular carbon nanoparticles and amorphous carbon were obtained on the substrate after a mechanical polishing pretreatment. Comparatively, the short tubular carbon nanofibers with the diameter of around 100 nm were deposited on the substrate pretreated by dipping in the concentrated nitric acid solution. The possible mechanism for the growth of such carbon nanofibers was discussed.


2012 ◽  
Vol 57 (2) ◽  
pp. 517 ◽  
Author(s):  
M. Żelechower ◽  
J. Kliś ◽  
E. Augustyn ◽  
J. Grzonka ◽  
D. Stróż ◽  
...  

The Microstructure of AnnealedGalfanCoating on Steel SubstrateThe commercially availableGalfancoating containing 5-7wt.% of Al deposited on the low carbon steel substrate by hot dipping has been examined with respect to the microstructure of the coating/substrate interface area. The application of several experimental techniques (SEM/EDS, XRD, TEM/AEM/EDS/ED) allowed demonstrating the two-phase structure of the alloy coating in non-treated, commercially availableGalfansamples: Zn-rich pre-eutectoidηphase grains are surrounded by lamellar eutectics ofβ-Al andη-Zn. The transition layer between the alloy coating and steel substrate with the considerably higher Al content (SEM/EDS, TEM/EDS) has been found in both non-treated and annealed samples (600°C/5 minutes). Only the monoclinic FeAl3Znxphase however was revealed in the annealed sample (TEM/electron diffraction) remaining uncertain the presence of the orthorhombic Fe2Al5Znxphase, reported by several authors.


1997 ◽  
Vol 37 (5) ◽  
pp. 512-518 ◽  
Author(s):  
Hiroyuki Ohtsubo ◽  
Hideki Sogo ◽  
Kiyomichi Nakai ◽  
Yasuya Ohmori

RSC Advances ◽  
2016 ◽  
Vol 6 (111) ◽  
pp. 110409-110415 ◽  
Author(s):  
Jin Dong ◽  
Baoping Lin

Modified SiO2 was doped into an EVA film containing a Eu3+ complex and the results show that the fluorescence of the EVA composite film increased, which helped to improve the photoelectric conversion efficiency of the solar cell.


2012 ◽  
Vol 572 ◽  
pp. 249-254 ◽  
Author(s):  
Xiang Long Yu ◽  
Zheng Yi Jiang ◽  
Dai Jun Yang ◽  
Dong Bin Wei ◽  
Quan Yang

Precipitation behavior of magnetite particles in the thermal grown oxide scale during isothermal cooling of microalloyed low carbon steel was studied using scanning electron microscopy (SEM) and thin film X-ray. The oxide scale was generated from Gleeble 3500 Thermal Mechanical Simulator connected with a humid air generator, to simulate 550 and 450C isothermal treatments. Several types of magnetite precipitates were observed during different cooling processes with respect to the possible mechanisms of precipitation have been discussed. It is found that magnetite particles is as a result of pro-eutectoid precipitation from oxygen-rich wustite, and also as a product of the partial decomposition of wustite during the cooling process due to change of oxygen concentration and migration of iron ions. Furthermore, microalloyed elements in steel reduce the stability of wustite thereby facilitate the precipitation process, whose products of multi-phase oxide finally determine the adhesive strength of oxide scale and steel substrate.


Sign in / Sign up

Export Citation Format

Share Document