Synthesis, Characterization and Optical Properties of ZnO Nanoparticles Doped with Er and Yb

2021 ◽  
Vol 21 (11) ◽  
pp. 5714-5722
Author(s):  
S. Fuentes ◽  
D. Espinoza ◽  
J. León

This paper discusses the structure, particle morphology, and optical properties of un-doped ZnO and ZnO doped with Er3+ and Yb3+ lanthanide ion nanoparticles (NPs) through a process denominated sol-gel-hydrothermal. According to the pattern of X-ray diffraction, ZnO:Er and ZnO:Yb is formed by a single-phase wurtzite structure with crystallites sized ~65 nm on average, and Er or Yb dopant ions in the hexagonal structure of ZnO, specifically in its distorted lattice sites. The results also suggest the possible role of oxygen vacancies or Ox– (defects) in the energy transfer from ZnO to the Er or Yb ions with a decrease of 3.18 eV and 3.19 eV in bandgap values to a red shift.

2006 ◽  
Vol 45 ◽  
pp. 2520-2527
Author(s):  
Yue Bin Zhang ◽  
Sean Li

In this work, the structural and magnetic properties of polycrystalline Zn1-xCoxO (x = 0, 0.02, 0.05, 0.0625, 0.10 and 0.15) oxides were studied in detail. Rietveld refinement of x-ray diffraction spectra indicates that a single-phase wurtzite structure was formed in Zn1-xCoxO samples for x up to 0.10. The magnetization for x = 0.02 can be fitted to a model with a paramagnetic Curie term and a diamagnetic constant which could arise from spins of isolated free Co ions and a diamagnetic background, respectively. For x > 0.02, however, an additional antiferromagnetic Curie-Weiss term needs to employ for fitting. This is due to an additional contribution from clustered Co ions that are in nearest neighbor positions through oxygen ions. Results show that the substitution of Co at the Zn site does not occur in a completely random manner but Co ions appear to have a tendency for clustering. In addition, the homogenous ZnO:Co thin film prepared by Pulsed Laser Deposition on SiO2/Si substrate shows ferromagnetic behavior at room temperature.


Cerâmica ◽  
2019 ◽  
Vol 65 (374) ◽  
pp. 274-281 ◽  
Author(s):  
S. S. Satpute ◽  
S. R. Wadgane ◽  
S. R. Kadam ◽  
D. R. Mane ◽  
R. H. Kadam

Abstract Y3+ substituted strontium hexaferrites having chemical composition SrYxFe12-xO19 (x= 0.0, 0.5, 1.0, 1.5) were successfully synthesized by sol-gel auto-combustion method. The structural and morphological studies of prepared samples were investigated by using X-ray diffraction technique, energy dispersive X-ray spectroscopy, field emission scanning electron microscopy (FE-SEM) and high-resolution transmission electron microscopy. The X-ray diffraction pattern confirmed the single-phase hexagonal structure of yttrium substituted strontium ferrite and the lattice parameters a and c increased with the substitution of Y3+ ions. The crystallite size also varied with x content from 60 to 80 nm. The morphology was studied by FE-SEM, and the grain size of nanoparticles ranged from 44 to 130 nm. The magnetic properties were investigated by using vibrating sample magnetometer. The value of saturation magnetization decreased from 49.60 to 35.40 emu/g. The dielectric constant decreased non-linearly whereas the electrical dc resistivity increased with the yttrium concentration in strontium hexaferrite.


2012 ◽  
Vol 545 ◽  
pp. 275-278 ◽  
Author(s):  
Lili Widarti Zainuddin ◽  
Norlida Kamarulzaman

A ceramics sample of LiTaO3 was prepared using a sol-gel method. The sample is annealed at 750 °C for 48 hours. X-ray diffraction analysis indicate the formation of single phase, rhombohedral structure. An ac impedance study was used to analyse the conductivity of LiTaO3 at room temperature and at various temperatures.


2015 ◽  
Vol 33 (4) ◽  
pp. 714-718 ◽  
Author(s):  
Neeraj K. Mishra ◽  
Chaitnaya Kumar ◽  
Amit Kumar ◽  
Manish Kumar ◽  
Pratibha Chaudhary ◽  
...  

AbstractA nanocomposite of 0.5SnO2–0.5Al2O3 has been synthesized using a sol-gel route. Structural and optical properties of the nanocomposite have been discussed in detail. Powder X-ray diffraction and scanning electron microscopy with energy-dispersive X-ray diffraction spectroscopy confirm the phase purity and the particle size of the 0.5SnO2–0.5Al2O3 nanocomposite (13 to 15 nm). The scanning electron microscopy also confirms the porosity in the sample, useful in sensing applications. The FT-IR analysis confirms the presence of physical interaction between SnO2 and Al2O3 due to the slight shifting and broadening of characteristic bands. The UV-Vis analysis confirms the semiconducting nature because of direct transition of electrons into the 0.5SnO2–0.5Al2O3 nanocomposites.


2014 ◽  
Vol 989-994 ◽  
pp. 656-659
Author(s):  
Ping Cao ◽  
Yue Bai

Al co-doped ZnCoO thin film has been prepared by a sol-gel method. The structural and optical properties of the sample were investigated. X-ray diffraction and UV absorption spectroscopy analyses indicate that Al3+ and Co2+ substitute for Zn2+ without changing the wurtzite structure. With the Al doping, the visible emission increased and the UV emission decreased, which is attributed to the increase of O vacancies and Zn interstitials.


2021 ◽  
Vol 66 (1) ◽  
pp. 57-64
Author(s):  
Hang Pham Vu Bich ◽  
Yen Nguyen Hai ◽  
Mai Phung Thi Thanh ◽  
Dung Dang Duc ◽  
Hung Nguyen Manh ◽  
...  

In this study, we present the process of synthesis FexNi1-xMn2O4 (x = 0; 0.1; 0.3; 0.5; 0.7; 0.9; 1) by method sol-gel. Scanning electron microscope results shows that the particle size is about 50 nm. The X-ray diffraction diagram shows that the samples are single phase, changing structure clearly as the x ratio increases from 0 to 1. The lattice constant, the bond length also changes with x-value as shown on the Raman scattering spectrum. The results of the vibrating sample magnetometer show that the magnetism of the material FexNi1-xMn2O4 changes with the value of x and reaches a maximum in the range x from 0.5 to 0.7.


2010 ◽  
Vol 160-162 ◽  
pp. 666-670
Author(s):  
Min Zhang Zheng ◽  
Xiao Mei Liu

To obtain more detail information about the cathode of La0.7Sr0.3Cu1-xFexO3-δ(x= 0.1,0.3,0.5,0.7,0.9)in IT-SOFCs, the cathode material La0.7Sr0.3Cu1-xFexO3-δ(x=0.1, 0.3, 0.5, 0.7, 0.9)was synthesized by a sol-gel method. X-ray diffraction revealed it to be form a single phase of perovskite. The high temperature electrical conductivity was measured by using the four-point dc technique, and cathodic overpotential with SDC(Sm0.15Ce0.85O1.925) electrolyte support was measured by using a current-interruption technique. The investigation of electrocheimical properties suggested that La0.7Sr0.3Cu0.7Fe0.3O3-δ has the highest electrical conductivity and the lowest cathodic polarization. Using La0.7Sr0.3Cu0.7Fe0.3O3-δ as cathode and 65%NiO/SDC as anode based on SDC electrolyte one can obtain higher current density and power density at intermediate temperatures, La0.7Sr0.3Cu0.7Fe0.3O3-δ is considered to be a possible cathode adapted to IT-SOFCs.


2013 ◽  
Vol 802 ◽  
pp. 227-231
Author(s):  
Panida Pilasuta ◽  
Pennapa Muthitamongkol ◽  
Chanchana Thanachayanont ◽  
Tosawat Seetawan

Crystal structure of Zn0.96Al0.02Ga0.02O was analyzed by X-Ray diffraction (XRD) technique and the microstructure was observed by scanning electron microscopy (SEM), and transmission electron microscopy (TEM). The XRD results showed single phase and hexagonal structure a = b = 3.24982 Å, and c = 5.20661 Å. The SEM and TEM results showed the grain size of material arrangement changed after sintering and TEM diffraction pattern confirmed hexagonal crystal structure of Zn0.96Al0.02Ga0.02O after sintering.


2016 ◽  
Vol 864 ◽  
pp. 117-122 ◽  
Author(s):  
Hesni Shabrany ◽  
Hendry Tju ◽  
Ardiansyah Taufik ◽  
Rosari Saleh

This paper discusses the catalytic activity of ZnO/CuO/nanographene platelets composites under visible light and ultrasound irradiation separately. The ZnO/CuO/nanographene platelets composites were synthesized using a sol-gel method. X-ray diffraction and nitrogen adsorption spectroscopy were employed to investigate the structural and surface area of the catalyst. The catalytic activity results showed that the presence of nanographene platelets in ZnO/CuO nanocomposites improved its efficiency in degrading methylene blue. A scavenger method was also used to understand the role of charged carriers and the active radical involved in the catalytic activity.


Sign in / Sign up

Export Citation Format

Share Document