Mathematical Analysis of Thermal Energy Distribution in a Hybridized Mixed Convective Flow

2021 ◽  
Vol 10 (2) ◽  
pp. 222-231
Author(s):  
Shafiq Ahmad ◽  
Sohail Nadeem ◽  
Aysha Rehman

The mixed convective flow of hybrid nanofluid (SWCNT-MWCNT/EG) containing micropolar fluid past a Riga surface embedded in porous medium is explored in detail throughout this study. In the momentum equation, the Darcy Forchheimer effect is used. The heat transfer phenomenon is exploited with viscous dissipation and thermal stratification over a non-Fourier heat flux model. PDEs are transformed into the necessary governing equations using transformations. The numerical results of non-linear governing equations are collected using Matlab function bvp4c. Graphical representations of the effects of relevant parameters on velocity, skin friction, and temperature are shown. The comparison of simple nanofluid and hybrid nanofluid is discussed in graphs. The temperature field is higher for hybrid nanofluid than simple nanofluid when solid volume fraction enhances. With increasing solid volume fraction, porosity parameter, and mixed convection parameter, the axial friction factor rises. The momentum boundary layer is inversely proportional to the slip parameter, Hartman number, variable viscosity and the porosity parameter.

2021 ◽  
Vol 11 (4) ◽  
pp. 1722
Author(s):  
Nidal Abu-Libdeh ◽  
Fares Redouane ◽  
Abderrahmane Aissa ◽  
Fateh Mebarek-Oudina ◽  
Ahmad Almuhtady ◽  
...  

In this study, a new cavity form filled under a constant magnetic field by Ag/MgO/H2O nanofluids and porous media consistent with natural convection and total entropy is examined. The nanofluid flow is considered to be laminar and incompressible, while the advection inertia effect in the porous layer is taken into account by adopting the Darcy–Forchheimer model. The problem is explained in the dimensionless form of the governing equations and solved by the finite element method. The results of the values of Darcy (Da), Hartmann (Ha) and Rayleigh (Ra) numbers, porosity (εp), and the properties of solid volume fraction (ϕ) and flow fields were studied. The findings show that with each improvement in the Ha number, the heat transfer rate becomes more limited, and thus the magnetic field can be used as an outstanding heat transfer controller.


2021 ◽  
Vol 2021 ◽  
pp. 1-13
Author(s):  
Ahmed Mohammed Alshehri ◽  
Hasan Huseyin Coban ◽  
Shafiq Ahmad ◽  
Umair Khan ◽  
Wajdi Mohamad Alghamdi

This paper provides a comprehensive analysis of the mixed convective flow that comprises SWCNT-MWCNT/water hybrid nanofluid containing micropolar fluid through a partially slipped vertical Riga surface. A Cattaneo–Christov heat flux model is used to examine the heat transport rate. The energy equation is gaining more significance with the effect of viscous dissipation and thermal stratification. The flow model is transformed by convenient transformation into nondimensionless form. The numerical results of nonlinear complex equations are collected using the bvp4c built-in function from MATLAB which is based on the finite difference method. The graphical results are obtained for both hybrid nanofluid and simple nanofluid. The temperature distribution for hybrid nanofluid is higher than that for simple nanofluid when the solid volume fraction increases. The axial friction factor increases with solid volume fraction, porosity parameter, and mixed convection parameter. The velocity graph varies inversely with nanofluid volume fraction and micropolar parameter.


Author(s):  
P. K. Kameswaran ◽  
P. Sibanda ◽  
A. S. N. Murti

We investigate the steady boundary layer mixed convective flow over a horizontal impermeable wall embedded in a porous medium filled with a water-based nanofluid. The model used for the nanofluid incorporates the effects of the volume fraction parameter. The main objective of the present study is to investigate viscous dissipation and Soret effects on heat and mass transfer in a nanofluid containing Al2O3 and TiO2 nanoparticles. The temperature and concentrations at the wall were kept constant. A similarity transformation was used to obtain a system of nonlinear ordinary differential equations. The resulting nonlinear governing equations with associated boundary conditions were solved numerically using the Matlab bvp4c solver. The effects of viscous dissipation and the Soret parameter on dimensionless temperature, concentration, heat and mass transfer are presented graphically. It was observed that the heat transfer rate decreased with an increase in nanoparticle volume fraction. Comparison of current and previously published results (Lai and Kulaki [10], Arfin et al. [12]) showed a good agreement.


Author(s):  
R Tabassum ◽  
Rashid Mehmood ◽  
O Pourmehran ◽  
NS Akbar ◽  
M Gorji-Bandpy

The dynamic properties of nanofluids have made them an area of intense research during the past few decades. In this article, flow of nonaligned stagnation point nanofluid is investigated. Copper–water based nanofluid in the presence of temperature-dependent viscosity is taken into account. The governing nonlinear coupled ordinary differential equations transformed by partial differential equations are solved numerically by using fourth-order Runge–Kutta–Fehlberg integration technique. Effects of variable viscosity parameter on velocity and temperature profiles of pure fluid and copper–water nanofluid are analyzed, discussed, and presented graphically. Streamlines, skin friction coefficients, and local heat flux of nanofluid under the impact of variable viscosity parameter, stretching ratio, and solid volume fraction of nanoparticles are also displayed and discussed. It is observed that an increase in solid volume fraction of nanoparticles enhances the magnitude of normal skin friction coefficient, tangential skin friction coefficient, and local heat flux. Viscosity parameter is found to have decreasing effect on normal and tangential skin friction coefficients whereas it has a positive influence on local heat flux.


2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Ioan Pop ◽  
Mohammadreza Nademi Rostami ◽  
Saeed Dinarvand

Purpose The purpose of this article is to study the steady laminar magnetohydrodynamics mixed convection stagnation-point flow of an alumina-graphene/water hybrid nanofluid with spherical nanoparticles over a vertical permeable plate with focus on dual similarity solutions. Design/methodology/approach The single-phase hybrid nanofluid modeling is based on nanoparticles and base fluid masses instead of volume fraction of first and second nanoparticles as inputs. After substituting pertinent similarity variables into the basic partial differential equations governing on the problem, the authors obtain a complicated system of nondimensional ordinary differential equations, which has non-unique solution in a certain range of the buoyancy parameter. It is worth mentioning that, the stability analysis of the solutions is also presented and it is shown that always the first solutions are stable and physically realizable. Findings It is proved that the magnetic parameter and the wall permeability parameter widen the range of the buoyancy parameter for which the solution exists; however, the opposite trend is valid for second nanoparticle mass. Besides, mass suction at the surface of the plate as well as magnetic parameter leads to reduce both hydrodynamic and thermal boundary layer thicknesses. Moreover, the assisting flow regime always has higher values of similarity skin friction and Nusselt number relative to opposing flow regime. Originality/value A novel mass-based model of the hybridity in nanofluids has been used to study the foregoing problem with focus on dual similarity solutions. The results of this paper are completely original and, to the best of the authors’ knowledge, the numerical results of the present paper were never published by any researcher.


2014 ◽  
Vol 2014 ◽  
pp. 1-11 ◽  
Author(s):  
H. Saleh ◽  
I. Hashim

Natural convection heat transfer in a rotating, differentially heated enclosure is studied numerically in this paper. The rotating enclosure is filled with water-Ag, water-Cu, water-Al2O3, or water-TiO2nanofluids. The governing equations are in velocity, pressure, and temperature formulation and solved using the staggered grid arrangement together with MAC method. The governing parameters considered are the solid volume fraction,0.0 ≤ ϕ ≤ 0.05, and the rotational speeds,3.5≤ Ω ≤ 17.5 rpm, and the centrifugal force is smaller than the Coriolis force and both forces were kept below the buoyancy force. It is found that the angular locations of the local maximums heat transfer were sensitive to rotational speeds and nanoparticles concentration. The global quantity of heat transfer rate increases about 1.5%, 1.1%, 0.8%, and 0.6% by increasing 1%ϕof the nanoparticles Ag, Cu, Al2O3, and TiO2, respectively, for the considered rotational speeds.


2021 ◽  
Vol 10 (2) ◽  
pp. 270-284
Author(s):  
Bikash C. Saha ◽  
T. R. Mahapatra ◽  
Dulal Pal

Double diffusive convective flow of nanofluid within a porous trapezoidal cavity of various aspect ratios consisting of Al2O3 nanoparticle in the presence of applied magnetic field in the direction perpendicular to the parallel top and bottom walls is analysed. The side walls of the cavity are maintained at constant temperature and concentration while its horizontal walls are insulated and impermeable. The irregular physical domain of the problem is transformed to a regular unit square computational domain. The governing equations have been solved by second order of finite difference method (FDM). Based upon numerical predictions, the effects of pertinent parameters such as Rayleigh number, Darcy number, aspect ratio, solid volume fraction and inclination angle on the flow and temperature fields and the heat transfer performance of the enclosure are examined. It is found that the intensity of heat and mass transfer increases with the increase in the Darcy number and aspect ratio. It is also observed that as the solid volume fraction increases there is increase in the average Nusselt number but reverse effect is observed on the average Sherwood number.


2019 ◽  
Vol 9 (23) ◽  
pp. 5241 ◽  
Author(s):  
Ahmed M. Rashad ◽  
Waqar A. Khan ◽  
Saber M. M. EL-Kabeir ◽  
Amal M. A. EL-Hakiem

The micropolar nanofluids are the potential liquids that enhance the thermophysical features and ability of heat transportation instead of base liquids. Alumina and Titania nanoparticles are mixed in a micropolar fluid. The impact of convective boundary condition is also examined with assisting and opposing flows of both nanofluids. The main objective of this study is to investigate mixed convective flow and heat transfer of micropolar nanofluids across a cylinder in a saturated porous medium. Non-similar variables are used to make the governing equations dimensionless. The local similar and non-similar solutions are obtained by using the Runge-Kutta-Fehlberg method of seventh order. The impacts of various embedded variables on the flow and heat transfer of micropolar nanofluids are investigated and interpreted graphically. It is demonstrated that the skin friction and heat transfer rates depend on solid volume fraction of nanoparticles, Biot number, mixed convection, and material parameters.


Sign in / Sign up

Export Citation Format

Share Document