Carbon Nano-Onions as Nontoxic and High-Fluorescence Bioimaging Agent in Food Chain—An In Vivo Study from Unicellular E. coli to Multicellular C. elegans

2012 ◽  
Vol 2 (2) ◽  
pp. 105-114 ◽  
Author(s):  
Sumit Kumar Sonkar ◽  
Mitrajit Ghosh ◽  
Manas Roy ◽  
Ameerunisha Begum ◽  
Sabyasachi Sarkar
2015 ◽  
Vol 308 (6) ◽  
pp. G550-G561 ◽  
Author(s):  
Teklu K. Gerbaba ◽  
Pratyush Gupta ◽  
Kevin Rioux ◽  
Dave Hansen ◽  
Andre G. Buret

Giardia duodenalis is the most common cause of parasitic diarrhea worldwide and a well-established risk factor for postinfectious irritable bowel syndrome. We hypothesized that Giardia-induced disruptions in host-microbiota interactions may play a role in the pathogenesis of giardiasis and in postgiardiasis disease. Functional changes induced by Giardia in commensal bacteria and the resulting effects on Caenorhabditis elegans were determined. Although Giardia or bacteria alone did not affect worm viability, combining commensal Escherichia coli bacteria with Giardia became lethal to C. elegans. Giardia also induced killing of C. elegans with attenuated Citrobacter rodentium espF and map mutant strains, human microbiota from a healthy donor, and microbiota from inflamed colonic sites of ulcerative colitis patient. In contrast, combinations of Giardia with microbiota from noninflamed sites of the same patient allowed for worm survival. The synergistic lethal effects of Giardia and E. coli required the presence of live bacteria and were associated with the facilitation of bacterial colonization in the C. elegans intestine. Exposure to C. elegans and/or Giardia altered the expression of 172 genes in E. coli. The genes affected by Giardia included hydrogen sulfide biosynthesis (HSB) genes, and deletion of a positive regulator of HSB genes, cysB, was sufficient to kill C. elegans even in the absence of Giardia. Our findings indicate that Giardia induces functional changes in commensal bacteria, possibly making them opportunistic pathogens, and alters host-microbe homeostatic interactions. This report describes the use of a novel in vivo model to assess the toxicity of human microbiota.


2011 ◽  
Vol 1362 ◽  
Author(s):  
Nitin Mohan ◽  
Bailin Zhang ◽  
Cheng-Chun Chang ◽  
Liling Yang ◽  
Chao-Sheng Chen ◽  
...  

ABSTRACTFluorescent nanodiamonds (FNDs) with a size in the range of 10 – 100 nm have been produced by ion irradiation and annealing, and isolated by differential centrifugation. Single particle spectroscopic characterization with confocal fluorescence microscopy and fluorescence correlation spectroscopy indicates that they are photostable and useful as an alternative to far-red fluorescent proteins for bioimaging applications. We demonstrate the application by performing in vivo imaging of bare and bioconjugated FND particles (100 nm in diameter) in C. elegans and zebrafishes and exploring the interactions between this novel nanomaterial and the model organisms. Our results indicate that FNDs can be delivered to the embryos of both organisms by microinjection and eventually into the hatched larvae in the next generation. No deleterious effects have been observed for the carbon-based nanoparticles in vivo. The high fluorescence brightness, excellent photostability, and nontoxic nature of the nanomaterial have allowed long-term imaging and tracking of embryogenesis in the organisms.


2011 ◽  
Vol 80 (3) ◽  
pp. 1288-1299 ◽  
Author(s):  
Cynthia Portal-Celhay ◽  
Martin J. Blaser

The microbial communities that reside within the intestinal tract in vertebrates are complex and dynamic. In this report, we establish the utility ofCaenorhabditis elegansas a model system for identifying the factors that contribute to bacterial persistence and for host control of gut luminal populations. We found that for N2 worms grown on mixed lawns of bacteria,Salmonella entericaserovar Typhimurium substantially outcompetedEscherichia coli, even whenE. coliwas initially present at 100-fold-higher concentrations. To address whether innate immunity affects the competition, thedaf-2anddaf-16mutants were studied; their total gut bacterial levels reflect overall capacity for colonization, butSalmonellaoutcompetedE. colito an extent similar to wild-type worms. To address the role of virulence properties,SalmonellaΔspi-1Δspi-2was used to compete withE. coli. The net differential was significantly less than that for wild-typeSalmonella; thus,spi-1 spi-2encodesC. eleganscolonization factors. AnE. colistrain with repeatedin vivopassage had an enhanced ability to compete against anin vitro-passedE. colistrain and againstSalmonella. Our data provide evidence of active competition for colonization niches in theC. elegansgut, as determined by bacterial factors and subject toin vivoselection.


Micromachines ◽  
2021 ◽  
Vol 12 (7) ◽  
pp. 832
Author(s):  
Vittorio Viri ◽  
Maël Arveiler ◽  
Thomas Lehnert ◽  
Martin A. M. Gijs

Caenorhabditiselegans (C. elegans) has gained importance as a model for studying host-microbiota interactions and bacterial infections related to human pathogens. Assessing the fate of ingested bacteria in the worm’s intestine is therefore of great interest, in particular with respect to normal bacterial digestion or intestinal colonization by pathogens. Here, we report an in vivo study of bacteria in the gut of C. elegans. We take advantage of a polydimethylsiloxane (PDMS) microfluidic device enabling passive immobilization of adult worms under physiological conditions. Non-pathogenic Escherichia coli (E. coli) bacteria expressing either pH-sensitive or pH-insensitive fluorescence reporters as well as fluorescently marked indigestible microbeads were used for the different assays. Dynamic fluorescence patterns of the bacterial load in the worm gut were conveniently monitored by time-lapse imaging. Cyclic motion of the bacterial load due to peristaltic activity of the gut was observed and biochemical digestion of E. coli was characterized by high-resolution fluorescence imaging of the worm’s intestine. We could discriminate between individual intact bacteria and diffuse signals related to disrupted bacteria that can be digested. From the decay of the diffuse fluorescent signal, we determined a digestion time constant of 14 ± 4 s. In order to evaluate the possibility to perform infection assays with our platform, immobilized C. elegans worms were fed pathogenic Mycobacterium marinum (M. marinum) bacteria. We analyzed bacterial fate and accumulation in the gut of N2 worms and mitochondrial stress response in a hsp-6::gfp mutant.


2019 ◽  
Author(s):  
Priya Prakash ◽  
Travis Lantz ◽  
Krupal P. Jethava ◽  
Gaurav Chopra

Amyloid plaques found in the brains of Alzheimer’s disease (AD) patients primarily consists of amyloid beta 1-42 (Ab42). Commercially, Ab42 is synthetized using peptide synthesizers. We describe a robust methodology for expression of recombinant human Ab(M1-42) in Rosetta(DE3)pLysS and BL21(DE3)pLysS competent E. coli with refined and rapid analytical purification techniques. The peptide is isolated and purified from the transformed cells using an optimized set-up for reverse-phase HPLC protocol, using commonly available C18 columns, yielding high amounts of peptide (~15-20 mg per 1 L culture) in a short time. The recombinant Ab(M1-42) forms characteristic aggregates similar to synthetic Ab42 aggregates as verified by western blots and atomic force microscopy to warrant future biological use. Our rapid, refined, and robust technique to purify human Ab(M1-42) can be used to synthesize chemical probes for several downstream in vitro and in vivo assays to facilitate AD research.


Sign in / Sign up

Export Citation Format

Share Document