Synergistic inhibition behavior of sodium diethyldithiocarbamate and sodium acetate for AZ31B magnesium alloy in NaCl solution

2019 ◽  
Vol 9 (1) ◽  
pp. 27-41
Author(s):  
Xiaoda Liu ◽  
Lifeng Hou ◽  
Haiyuan Wang ◽  
Yulin Li ◽  
Huan Wei ◽  
...  
2019 ◽  
Vol 948 ◽  
pp. 237-242 ◽  
Author(s):  
Budi Arifvianto ◽  
Suyitno ◽  
Muslim Mahardika

Surface mechanical attrition treatment (SMAT) has so far been used as a technique for improving mechanical and tribological properties of magnesium and its alloys. However, the effects of the SMAT on corrosion and degradability of these materials are still rarely reported in open literature. In this research, the degradation behavior of AZ31B magnesium alloy after receiving the SMAT was characterized. The degradation behavior of the Mg alloy was determined from the weight losses after an immersion test for 24 h in 3.5 wt.% NaCl solution. During the test, the pH of the solution was also monitored. The results obviously showed higher corrosion rates of the Mg alloy that had been treated by using the SMAT. Interestingly, the degradation rate of the Mg alloy decreased once a longer duration of SMAT was applied. Meanwhile, the pH of NaCl solution increased up to 12 and 13.9 once the non-treated and the SMAT specimens were immersed into the solution, respectively. In addition, the energy dispersive X-ray spectroscopy (EDS) analysis confirmed the presence of corrosion products in all the Mg samples that were similar to those revealed in the literature.


2007 ◽  
Vol 546-549 ◽  
pp. 579-584
Author(s):  
Hua Mao Zhou ◽  
Jian Qiu Wang ◽  
Qi Shan Zang ◽  
En Hou Han ◽  
Wei Ke

The acoustic emission (AE) detected during the fatigue process in an as-rolled magnesium alloy AZ31B was analyzed. Measurements were made during fatigue in air as well as in aqueous 0.1% NaCl solution. Three stages of fatigue were detected with AE. It is concluded that plasticity, crack extension or friction was the main AE sources during fatigue.


2020 ◽  
Vol 15 (2) ◽  
Author(s):  
Subravel V

In this investigation an attempt has been made to study the effect of welding on fusion characteristics of pulsed current gas tungsten arc welded AZ31B magnesium alloy joints. Five joints were fabricated using different levels of welding speed (105 mm/min –145 mm/min). From this investigation, it is found that the joints fabricated using a welding speed of 135 mm/min yielded superior tensile properties compared to other joints. The formation of finer grains and higher hardness in fusion zone and uniformly distributed precipitates are the main reasons for the higher tensile properties of these joints


2005 ◽  
Vol 15 (1) ◽  
pp. 25-30
Author(s):  
Yong-Gil Kim ◽  
Hak-Kyu Choi ◽  
Min-Cheol Kang ◽  
Hae-Yong Jeong ◽  
Cha-Hurn Bae

Sign in / Sign up

Export Citation Format

Share Document