scholarly journals Long-Term Reduction in Infrared Autofluorescence Caused by Infrared Light Below the Maximum Permissible Exposure

2014 ◽  
Vol 55 (6) ◽  
pp. 3929 ◽  
Author(s):  
Benjamin D. Masella ◽  
David R. Williams ◽  
William S. Fischer ◽  
Ethan A. Rossi ◽  
Jennifer J. Hunter
Biomolecules ◽  
2019 ◽  
Vol 9 (12) ◽  
pp. 820 ◽  
Author(s):  
Dmitry Polikarpov ◽  
Liuen Liang ◽  
Andrew Care ◽  
Anwar Sunna ◽  
Douglas Campbell ◽  
...  

Bladder cancer is the ninth most common cancer worldwide. Due to a high risk of recurrence and progression of bladder cancer, every patient needs long-term surveillance, which includes regular cystoscopy, sometimes followed by a biopsy of suspicious lesions or resections of recurring tumours. This study addresses the development of novel biohybrid nanocomplexes representing upconversion nanoparticles (UCNP) coupled to antibodies for photoluminescent (PL) detection of bladder cancer cells. Carrying specific antibodies, these nanoconjugates selectively bind to urothelial carcinoma cells and make them visible by emitting visible PL upon excitation with deeply penetrating near-infrared light. UCNP were coated with a silica layer and linked to anti-Glypican-1 antibody MIL38 via silica-specific solid-binding peptide. Conjugates have been shown to specifically attach to urothelial carcinoma cells with high expression of Glypican-1. This result highlights the potential of produced conjugates and conjugation technology for further studies of their application in the tumour detection and fluorescence-guided resection.


2017 ◽  
Vol 114 (15) ◽  
pp. E3110-E3118 ◽  
Author(s):  
Moustafa R. K. Ali ◽  
Mohammad Aminur Rahman ◽  
Yue Wu ◽  
Tiegang Han ◽  
Xianghong Peng ◽  
...  

Gold nanorods (AuNRs)-assisted plasmonic photothermal therapy (AuNRs-PPTT) is a promising strategy for combating cancer in which AuNRs absorb near-infrared light and convert it into heat, causing cell death mainly by apoptosis and/or necrosis. Developing a valid PPTT that induces cancer cell apoptosis and avoids necrosis in vivo and exploring its molecular mechanism of action is of great importance. Furthermore, assessment of the long-term fate of the AuNRs after treatment is critical for clinical use. We first optimized the size, surface modification [rifampicin (RF) conjugation], and concentration (2.5 nM) of AuNRs and the PPTT laser power (2 W/cm2) to achieve maximal induction of apoptosis. Second, we studied the potential mechanism of action of AuNRs-PPTT using quantitative proteomic analysis in mouse tumor tissues. Several death pathways were identified, mainly involving apoptosis and cell death by releasing neutrophil extracellular traps (NETs) (NETosis), which were more obvious upon PPTT using RF-conjugated AuNRs (AuNRs@RF) than with polyethylene glycol thiol-conjugated AuNRs. Cytochrome c and p53-related apoptosis mechanisms were identified as contributing to the enhanced effect of PPTT with AuNRs@RF. Furthermore, Pin1 and IL18-related signaling contributed to the observed perturbation of the NETosis pathway by PPTT with AuNRs@RF. Third, we report a 15-month toxicity study that showed no long-term toxicity of AuNRs in vivo. Together, these data demonstrate that our AuNRs-PPTT platform is effective and safe for cancer therapy in mouse models. These findings provide a strong framework for the translation of PPTT to the clinic.


2000 ◽  
Vol 177 ◽  
pp. 179-190 ◽  
Author(s):  
Patricia Whitelock

Long-term trends in the infrared (JHKL) light curves of various carbon variables are described. Some stars, e.g. the semi-regular variables R Scl and GM CMa, show multiple periodicities; others, particularly the Miras with moderately thick dust-shells, show more erratic long-term changes. The light curves for R For, which have been intensively monitored over 20 years, show a pattern which is reminiscent of that seen for R CrB stars. This pattern is superimposed on regular large-amplitude Mira pulsations. The multi-periodic and erratic behaviour of these stars is compared with the predictions from various models.


2022 ◽  
Author(s):  
Zhongpeng Yu ◽  
Jie Sun ◽  
Hongling Deng ◽  
Hong Kan ◽  
Chen Xu ◽  
...  

With the long-term widespread overuse of antibiotics, a large number of antibiotic-resistant bacteria have emerged and become a serious threat to healthcare systems. As an alternative strategy, near-infrared light (NIR)-actuated...


2022 ◽  
Vol 15 ◽  
Author(s):  
Kimmo Lehtinen ◽  
Miriam S. Nokia ◽  
Heikki Takala

Optogenetics, a field concentrating on controlling cellular functions by means of light-activated proteins, has shown tremendous potential in neuroscience. It possesses superior spatiotemporal resolution compared to the surgical, electrical, and pharmacological methods traditionally used in studying brain function. A multitude of optogenetic tools for neuroscience have been created that, for example, enable the control of action potential generation via light-activated ion channels. Other optogenetic proteins have been used in the brain, for example, to control long-term potentiation or to ablate specific subtypes of neurons. In in vivo applications, however, the majority of optogenetic tools are operated with blue, green, or yellow light, which all have limited penetration in biological tissues compared to red light and especially infrared light. This difference is significant, especially considering the size of the rodent brain, a major research model in neuroscience. Our review will focus on the utilization of red light-operated optogenetic tools in neuroscience. We first outline the advantages of red light for in vivo studies. Then we provide a brief overview of the red light-activated optogenetic proteins and systems with a focus on new developments in the field. Finally, we will highlight different tools and applications, which further facilitate the use of red light optogenetics in neuroscience.


2019 ◽  
pp. 1608-1635
Author(s):  
Lei Tong ◽  
Jun Zhou ◽  
Shahla Hosseini Bai ◽  
Chengyuan Xu ◽  
Yuntao Qian ◽  
...  

Biochar soil amendment is globally recognized as an emerging approach to mitigate CO2 emissions and increase crop yield. Because the durability and changes of biochar may affect its long term functions, it is important to quantify biochar in soil after application. In this chapter, an automatic soil biochar estimation method is proposed by analysis of hyperspectral images captured by cameras that cover both visible and infrared light wavelengths. The soil image is considered as a mixture of soil and biochar signals, and then hyperspectral unmixing methods are applied to estimate the biochar proportion at each pixel. The final percentage of biochar can be calculated by taking the mean of the proportion of hyperspectral pixels. Three different models of unmixing are described in this chapter. Their experimental results are evaluated by polynomial regression and root mean square errors against the ground truth data collected in the environmental labs. The results show that hyperspectral unmixing is a promising method to measure the percentage of biochar in the soil.


Sign in / Sign up

Export Citation Format

Share Document