scholarly journals Peri-transplant glucocorticoids redistribute donor T-cells to the bone marrow and prevent relapse after haploidentical SCT

JCI Insight ◽  
2021 ◽  
Author(s):  
Takayuki Inoue ◽  
Motoko Koyama ◽  
Katsuji Kaida ◽  
Kazuhiro Ikegame ◽  
Kathleen S. Ensbey ◽  
...  
Keyword(s):  
T Cells ◽  
Blood ◽  
2008 ◽  
Vol 112 (6) ◽  
pp. 2232-2241 ◽  
Author(s):  
Jeff K. Davies ◽  
John G. Gribben ◽  
Lisa L. Brennan ◽  
Dongin Yuk ◽  
Lee M. Nadler ◽  
...  

AbstractWe report the outcomes of 24 patients with high-risk hematologic malignancies or bone marrow failure (BMF) who received haploidentical bone marrow transplantation (BMT) after ex vivo induction of alloantigen-specific anergy in donor T cells by allostimulation in the presence of costimulatory blockade. Ninety-five percent of evaluable patients engrafted and achieved full donor chimerism. Despite receiving a median T-cell dose of 29 ×106/kg, only 5 of 21 evaluable patients developed grade C (n = 4) or D (n = 1) acute graft-versus-host disease (GVHD), with only one attributable death. Twelve patients died from treatment-related mortality (TRM). Patients reconstituted T-cell subsets and immunoglobulin levels rapidly with evidence of in vivo expansion of pathogen-specific T cells in the early posttransplantation period. Five patients reactivated cytomegalovirus (CMV), only one of whom required extended antiviral treatment. No deaths were attributable to CMV or other viral infections. Only 1 of 12 evaluable patients developed chronic GVHD. Eight patients survive disease-free with normal performance scores (median follow-up, 7 years). Thus, despite significant early TRM, ex vivo alloanergization can support administration of large numbers of haploidentical donor T cells, resulting in rapid immune reconstitution with very few viral infections. Surviving patients have excellent performance status and a low rate of chronic GVHD.


Blood ◽  
1987 ◽  
Vol 70 (4) ◽  
pp. 960-964 ◽  
Author(s):  
JP Daley ◽  
MK Rozans ◽  
BR Smith ◽  
SJ Burakoff ◽  
JM Rappeport ◽  
...  

Abstract We have studied the effect of removing donor T cells by treatment with the monoclonal antibody Leu-1 and complement before marrow transplantation on the regeneration of functionally competent T lymphocytes in the blood at selected times after transplant. Using sensitive limiting-dilution methods that allow us to enumerate helper, cytotoxic, and proliferating T lymphocyte precursors, we report that regeneration of a functional T cell compartment is more severely impaired for the first 180 days after transplantation in those patients given T cell-depleted bone marrow than in recipients of untreated marrow. After this first 6 months, however, patients given T cell- depleted bone marrow had blood T cell frequencies comparable to those observed in patients given untreated marrow. Diminished frequencies of reactive T cells in recipients of depleted marrow could leave them more susceptible to infection or to the recurrence of neoplastic cells.


Blood ◽  
2005 ◽  
Vol 106 (11) ◽  
pp. 3024-3024
Author(s):  
Mohammad S. Hossain ◽  
John D. Robak ◽  
Edmund K. Waller

Abstract A major problem in allogeneic BMT is post transplant immunodeficiency leading to opportunistic infection and relapse. Previously we showed that amotosalen-treated allogeneic donor T cells given at the time of BMT and experimental murine cytomegalovirus (MCMV) infection could prevent lethal MCMV disease without producing GvHD. In this study we have focused on a more clinically applicable model where prophylactic amotosalen-treated allogeneic donor splenocytes are given at the time of BMT, followed by MCMV infection 100 days later. We observed that amotosalen-treated donor T-cells significantly expanded and responded well in presence of viral infection without inducing any GvHD, protected recipients against viral disease, and were associated with significantly improved hematopoietic engraftment and immune reconstitution. Methods: Using a parent to F1 mouse BMT model, splenocytes (3x106 untreated or 10x106 amotosalen-treated) from MCMV immunized C57BL/6 donors were transplanted along with 5x106 T-cell depleted bone marrow (TCD BM) from naïve congeneic mice into lethally irradiated (11Gy) CB6F1 recipients (C57BL/6 x Balb/C). Recipient mice were infected i.p. with a sublethal dose (5x104 pfu per mouse) of MCMV 100 days or more after transplant. Clinical chronic GvHD was monitored by weight loss, hair loss, ruffled fur, diarrhea, and decreased activity. Flow cytometry was used to quantitate T cell chimerism (in recipient PBMC, spleen, liver and thymus) and MCMV-peptide specific CD8+ T-cells (tetramer+ and IFN-γ producing). Serum IFN-γ and TNF-α were determined by ELISA. Liver and spleen viral loads were determined by counting PFU in tissue homogenates plated onto 3T3 confluent monolayers. Results: Recipients of untreated control donor splenocytes suffered from chronic GvHD within 100 days of transplant, while those that received amotosalen-treated splenocytes experienced no GvHD. In response to MCMV infection at 100 days post transplant, residual amotosalen-treated donor T-cells rapidly expanded over 25-fold within 10 days, but did not cause lethality or detectable GvHD. Expanded amotosalen-treated T-cells showed activated anti-viral responses and developed a memory phenotype at late phases of viral infection. PBMC, spleen and liver showed elevated levels of MCMV specific tetramer+, IFN-γ+, and TNF-α+ CD8+ T-cells that were associated with accelerated viral clearance within day 3 after viral infection. While expansion and generation of amotosalen-treated donor T-cells mostly occurred in the liver, the generation of donor bone marrow-derived new T-cells occurred through both the thymus and the liver. In contrast, recipients of untreated donor splenocytes had reduced thymic function, resulting in severely impaired immune reconstitution and decreased anti-viral immunity. Conclusion: Prophylactically administered amotosalen-treated allogeneic donor T cells 1) were almost completely devoid of GvHD activity, 2) promoted hematopoietic engraftment and improved immune reconstitution, and 3) persisted long-term (>100 days) and successfully protected recipients from sublethal MCMV infection. Thus, infusion of amotosalen-treated donor T-cells at the time of transplantation is a clinically-attractive approach to adoptive anti-viral immunotherapy without chronic GvHD following hematopoietic progenitor cell transplantation.


Blood ◽  
2006 ◽  
Vol 108 (11) ◽  
pp. 5167-5167
Author(s):  
Yihuan Chai ◽  
Huiying Qiu ◽  
Hui Lv

Abstract One of the main goals in allogeneic bone marrow(BM) transplantation is the abrogation of graft-versus-host disease (GVHD) with the preservation of antileukemia and antiviral activity. The Study present a selective T cell depletion strategy based on the physical separation of the alloreactive T cells, which were identified by expression of two activation-induced antigens (CD25 and CD69). T cells from C57BL/6(H-2b) mice were first activated with BALB/c (H-2d) recipient spleen cells in a 2-day mixed-lymphocyte-culture (MLC). Following this activation, this compound is selectively depleted based on expression of two activation-induced antigens CD25 and CD69 using magnetic cell sorting. The depleted cells or the untreated cells were then rechallenged respectively in a secondary MLC, with the same stimulator cells or a third-party (DBAH-2k) or tumor- specific (SP2/0, BALB/c-origin myeloma) cells. Cells proliferation were assayed at the indicated time points(1, 2, 3, 4, 5 days). These treated cells or control-cultured cells (2.0×106) mixed with 5.0×106 BM cells from C57BL/6 were transfused respectively by the trail vain into the lethally irradiated BALB/c to observe the survival time, GVHD incidence and pathological analysis. MLC assays demonstrated that this technique led to a significant decrease in alloreactivity of donor cells(29.02~64.17%), which at the same time preserved reactivity against third party cells(49.61~75.69%)and anti-tumor cells(61.14~68.62%). The mice in the group of control-coclutured were died of acute GVHD within 24days. The 7 recipient mice in the treated group were free of acute GVHD, and 3 mice were died of acute GVHD (aGVHD) within 23 days. MACS-based ex-vivo depletion of alloreactive donor T cells based on expression of two activation-induced antigens (CD25 and CD69) could inhibit anti-host responses, by contrast, anti-SP2/O and anti-third-party responses were preserved. Cotransplantation of these selected depleted cells and BM cells could reduce aGVHD.


Blood ◽  
2011 ◽  
Vol 118 (21) ◽  
pp. 4011-4011
Author(s):  
Ji-Young Lim ◽  
Gyeongsin Park ◽  
Hyewon Youn ◽  
Eun-Young Choi ◽  
Dae-Chul Jeong ◽  
...  

Abstract Abstract 4011 Graft-versus-host disease (GVHD) is a common complication after allogeneic hematopoietic stem cell transplantation (allo-HSCT). Myeloid-derived suppressor cells (MDSCs) are a heterogeneous population of immature myeloid cells with anti-inflammatory activity. MyD88 is a cytoplasmic adaptor molecule essential for integrating and transducing the signals generated by the toll-like receptor (TLR) family. Activation of inflammatory signaling through MyD88, presumably through ligation of multiple TLRs, plays a key role in the expansion of MDSCs. We therefore investigated how the MyD88-dependent expansion of MDSCs from donor bone marrow (BM) contributes to protection of acute GVHD. To test this, we employed an intestinal GVHD murine model, C57BL/6 (H-2b) → B6D2F1 (H-2b/d), which differs at major and minor histocompatibility loci. Lethally irradiated recipient mice were transplanted with wild-type (WT) or MyD88 knock out (KO) mice T cell-depleted (TCD)-BM together with WT spleen T cells. Morbidity and mortality of GVHD was significantly worse in recipients of MyD88 KO TCD-BM with higher intestinal pathologic grading. Animals that underwent syngeneic HSCT did not show early mortality regardless of presence of MyD88 in BM, which ruled out myelosuppression-associated toxicity. The expression of Gr-1+CD11b+ in blood, mesenteric lymph nodes and liver on day 13 was significantly reduced in the recipients of MyD88 KO TCD-BM compared with those of WT TCD-BM while the percentage of donor T cells infiltrating colon and liver was significantly higher. In parallel, the percentages of donor T cells to undergo apoptosis in response to alloantigens in vivo were significantly decreased in recipients of MyD88 KO TCD-BM. Injection of MDSCs from BM of non-tumor bearing donor markedly inhibited GVHD lethality in recipients of MyD88 KO TCD-BM. Moreover, in vivo administration of lipopolysaccharide (LPS), a TLR ligand, to donor mice expanded GR-1+CD11b+ in BM with enhanced expression of MyD88 mRNA. Recipients of TCD-BM from WT mice injected LPS showed attenuated GVHD severity as measured by weight loss and survival compared to those of TCD-BM from WT mice injected diluent. In summary, MyD88-dependent expansion of GR-1+CD11b+ population from donor TCD-BM appears to be critical for survival after allo-HSCT. Incomplete expansion of GR-1+CD11b+ population in target organs correlates with decreased apoptosis and increased infiltration of donor T cells into the target organs. Disclosures: No relevant conflicts of interest to declare.


Blood ◽  
2015 ◽  
Vol 126 (23) ◽  
pp. 1880-1880
Author(s):  
Trisha Dant ◽  
Danny Bruce ◽  
Leshara Fulton ◽  
Michelle West ◽  
Niko Foger ◽  
...  

Abstract Allogeneic stem cell transplant is a standard treatment for patients with high-risk and relapsed myeloid and lymphoid malignancies. However, donor T cells from the stem cell graft mediate graft-versus-host disease (GVHD), which is a common cause of morbidity and mortality for transplant recipients. Our group and others have shown that migration of donor T cells into secondary lymphoid tissue (SLT) and subsequent migration to target organs is critical to the pathogenesis of acute GVHD. The Coronin family of proteins consists of actin-binding proteins, which regulate filament formation by interacting with the Arp2/3 complex. Coronin 1B, a ubiquitously expressed member of the Coronin family, is required for lamellipodial protrusion and effective cell migration. Previous work has not evaluated a role for this protein in the function of T lymphocytes or during acute GVHD. To evaluate the effect of Coronin 1B in acute GVHD pathogenesis, we transplanted B6 T cell depleted bone marrow cells with wild type or Coronin 1B-/- T cells to lethally irradiated B6D2 and BALB/c recipient mice and evaluated clinical score of GVHD and overall survival. B6D2 recipients of Coronin 1B-/- T cells demonstrated 100% survival (Figure 1A. p< .001 as determined by Log-rank (Mantel-Cox) test) and significantly decreased clinical scores after transplant. This was confirmed with improvement in survival in BALB/c recipients of Coronin 1B-/- T cells. Additionally, Coronin 1B-/- T cells were capable of eliminating P815 tumor cells, indicating that loss of Coronin 1B does not inhibit graft-versus-tumor activity. By day 12 post- transplant, all mice receiving bone marrow alone developed tumor compared to none of the mice receiving Coronin 1B-/- T Cells. However, protection was not complete as 40% of Coronin 1B-/- T cell recipients developed tumor by day 23. To determine the effect of Coronin 1B on T cell migration during GVHD, B6D2 recipients were given GFP-expressing wild type or Coronin 1B-/- T cells along with T cell depleted bone marrow. Lymphoid tissue and target organs were harvested and analyzed by flow cytometry or GFP ELISA. We observed decreased accumulation of Coronin 1B-/- CD4+ (Figure 1B. p< .01 as determined by Student's t -test) and CD8+ T cells in the inguinal lymph node, mesenteric lymph node, and the spleen 4 days after transplant with no difference in accumulation in lymphoid tissue on days 7 and 14 after transplant. Additionally, we found decreased accumulation of Coronin 1B-/- donor T cells in the lung, colon and spleen 14 days after transplant (Figure 1C. p< .05 by Student's t -test). We also quantified the amount of cytokine in target organs by ELISA, and observed a decrease in IFN-γ and TNF-α in the colon 14 days after transplant. Our data demonstrate that Coronin 1B-/- T cells elicit reduced GVHD compared to wild type T cells. This was correlated with decreased accumulation of Coronin 1B-/- T cells in SLT early after transplant. These data indicate that targeting the migration of T cells to SLT is a viable approach to prevent acute GVHD. Figure 1. (A) Kaplan Meier curve comparing B6D2 recipients of Coronin 1B-/- T cells and wild type (WT) T Cells. (B) Decreased accumulation of Coronin 1B-/- T Cells 4 Days after transplant. For panels (B) and (C) black bars indicate recipients of WT T cells while red bars indicate recipients of Coronin 1B-/- T cells. Inguinal lymph nodes (ILN) were pooled from n=5 mice from each group. Spleens were analyzed individually. GFP expressing donor cells were analyzed by flow cytometry. Representative image of two experiments. (C) Coronin 1B-/- T cells express decreased accumulation in the lung, colon and spleen 14 days after transplant. Target organs were analyzed by GFP ELISA to detect GFP+ Donor Cells (n=5 in each group). Figure 1. (A) Kaplan Meier curve comparing B6D2 recipients of Coronin 1B-/- T cells and wild type (WT) T Cells. (B) Decreased accumulation of Coronin 1B-/- T Cells 4 Days after transplant. For panels (B) and (C) black bars indicate recipients of WT T cells while red bars indicate recipients of Coronin 1B-/- T cells. Inguinal lymph nodes (ILN) were pooled from n=5 mice from each group. Spleens were analyzed individually. GFP expressing donor cells were analyzed by flow cytometry. Representative image of two experiments. (C) Coronin 1B-/- T cells express decreased accumulation in the lung, colon and spleen 14 days after transplant. Target organs were analyzed by GFP ELISA to detect GFP+ Donor Cells (n=5 in each group). Disclosures No relevant conflicts of interest to declare.


Sign in / Sign up

Export Citation Format

Share Document