scholarly journals Reprogramming of antiviral T cells prevents inactivation and restores T cell activity during persistent viral infection

2006 ◽  
Vol 116 (6) ◽  
pp. 1675-1685 ◽  
Author(s):  
D. G. Brooks
2020 ◽  
Vol 5 (51) ◽  
pp. eabb5590 ◽  
Author(s):  
Heather M. Ren ◽  
Elizabeth M. Kolawole ◽  
Mingqiang Ren ◽  
Ge Jin ◽  
Colleen S. Netherby-Winslow ◽  
...  

Development of tissue-resident memory (TRM) CD8 T cells depends on CD4 T cells. In polyomavirus central nervous system infection, brain CXCR5hi PD-1hi CD4 T cells produce interleukin-21 (IL-21), and CD8 T cells lacking IL-21 receptors (IL21R−/−) fail to become bTRM. IL-21+ CD4 T cells exhibit elevated T cell receptor (TCR) affinity and higher TCR density. IL21R−/− brain CD8 T cells do not express CD103, depend on vascular CD8 T cells for maintenance, are antigen recall defective, and lack TRM core signature genes. CD4 T cell–deficient and IL21R−/− brain CD8 T cells show similar deficiencies in expression of genes for oxidative metabolism, and intrathecal delivery of IL-21 to CD4 T cell–depleted mice restores expression of electron transport genes in CD8 T cells to wild-type levels. Thus, high-affinity CXCR5hi PD-1hi CD4 T cells in the brain produce IL-21, which drives CD8 bTRM differentiation in response to a persistent viral infection.


2009 ◽  
Vol 131 ◽  
pp. S53-S54
Author(s):  
Kathryn Mackerness ◽  
Maureen Cox ◽  
Casey Weaver ◽  
Laurie Harrington ◽  
Allan Zajac

2009 ◽  
Vol 83 (17) ◽  
pp. 8905-8915 ◽  
Author(s):  
Lucile Garidou ◽  
Sara Heydari ◽  
Phi Truong ◽  
David G. Brooks ◽  
Dorian B. McGavern

ABSTRACT Persistent viral infections are a major health concern worldwide. During persistent infection, overwhelming viral replication and the rapid loss of antiviral T-cell function can prevent immune-mediated clearance of the infection, and therapies to reanimate the immune response and purge persistent viruses have been largely unsuccessful. Adoptive immunotherapy using memory T cells is a highly successful therapeutic approach to eradicate a persistent viral infection. Understanding precisely how therapeutically administered memory T cells achieve clearance should improve our ability to terminate states of viral persistence in humans. Mice persistently infected from birth with lymphocytic choriomeningitis virus are tolerant to the pathogen at the T-cell level and thus provide an excellent model to evaluate immunotherapeutic regimens. Previously, we demonstrated that adoptively transferred memory T cells require recipient dendritic cells to effectively purge an established persistent viral infection. However, the mechanisms that reactivate and sustain memory T-cell responses during clearance of such an infection remain unclear. Here we establish that therapeutic memory T cells require CD80 and CD86 costimulatory signals to efficiently clear an established persistent viral infection in vivo. Early blockade of costimulatory pathways with CTLA-4-Fc decreased the secondary expansion of virus-specific CD8+ and CD4+ memory T cells as well as their ability to produce antiviral cytokines and purge the persistent infection. Late costimulation blockade also reduced virus-specific T-cell numbers, illustrating that sustained interactions with costimulatory molecules is required for efficient T-cell expansion. These findings indicate that antiviral memory T cells require costimulation to efficiently clear a persistent viral infection and that costimulatory pathways can be targeted to modulate the magnitude of an adoptive immunotherapeutic regimen.


2002 ◽  
Vol 76 (2) ◽  
pp. 829-840 ◽  
Author(s):  
Shenghua Zhou ◽  
Rong Ou ◽  
Lei Huang ◽  
Demetrius Moskophidis

ABSTRACT Viral persistence following infection with invasive strains of lymphocytic choriomeningitis virus (LCMV) can be achieved by selective down-regulation of virus-specific T lymphocytes. High viral burden in the onset of infection drives responding cells into functional unresponsiveness (anergy) that can be followed by their physical elimination. In this report, we studied down-regulation of the virus-specific CD8+-T-cell response during persistent infection of adult mice with LCMV, with emphasis on the role of perforin-, Fas/FasL-, or tumor necrosis factor receptor 1 (TNFR1)-mediated cytolysis in regulating T-cell homeostasis. The results reveal that the absence of perforin, Fas-ligand, or TNFR1 has no significant effect on the kinetics of proliferation and functional inactivation of virus-specific CD8+ T cells in the onset of chronic LCMV infection. However, these molecules play a critical role in the homeostatic regulation of T cells, influencing the longevity of the virus-specific CD8+-T-cell population once it has become anergic. Thus, CD8+ T cells specific to the dominant LCMV NP396–404 epitope persist in an anergic state for at least 70 days in perforin-, FasL-, or TNFR1-deficient mice, but they were eliminated by day 30 in C57BL/6 controls. These effects were additive as shown by a deficit of apoptotic death of NP396–404 peptide-specific CD8+ T cells in mice lacking both perforin and TNFR1. This suggests a role for perforin-, FasL-, and TNFR1-mediated pathways in down-regulation of the antiviral T cell response during persistent viral infection by determining the fate of antigen-specific T cells. Moreover, virus-specific anergic CD8+ T cells in persistently infected C57BL/6 mice contain higher levels of Bcl-2 and Bcl-XL than functionally intact T cells generated during acute LCMV infection. In the case of proapoptotic factors, Bax expression did not differ between T-cell populations and Bad was below the limit of detection in all samples. As expression of the Bcl-2 family members controls susceptibility to apoptosis, this finding may provide a molecular basis for the survival of anergic cells under conditions of prolonged antigen stimulation.


2008 ◽  
Vol 105 (51) ◽  
pp. 20428-20433 ◽  
Author(s):  
D. G. Brooks ◽  
S.-J. Ha ◽  
H. Elsaesser ◽  
A. H. Sharpe ◽  
G. J. Freeman ◽  
...  

Author(s):  
Shannon L. McArdel ◽  
Anne-Sophie Dugast ◽  
Maegan E. Hoover ◽  
Arjun Bollampalli ◽  
Enping Hong ◽  
...  

AbstractRecombinant agonists that activate co-stimulatory and cytokine receptors have shown limited clinical anticancer utility, potentially due to narrow therapeutic windows, the need for coordinated activation of co-stimulatory and cytokine pathways and the failure of agonistic antibodies to recapitulate signaling by endogenous ligands. RTX-240 is a genetically engineered red blood cell expressing 4-1BBL and IL-15/IL-15Rα fusion (IL-15TP). RTX-240 is designed to potently and simultaneously stimulate the 4-1BB and IL-15 pathways, thereby activating and expanding T cells and NK cells, while potentially offering an improved safety profile through restricted biodistribution. We assessed the ability of RTX-240 to expand and activate T cells and NK cells and evaluated the in vivo efficacy, pharmacodynamics and tolerability using murine models. Treatment of PBMCs with RTX-240 induced T cell and NK cell activation and proliferation. In vivo studies using mRBC-240, a mouse surrogate for RTX-240, revealed biodistribution predominantly to the red pulp of the spleen, leading to CD8 + T cell and NK cell expansion. mRBC-240 was efficacious in a B16-F10 melanoma model and led to increased NK cell infiltration into the lungs. mRBC-240 significantly inhibited CT26 tumor growth, in association with an increase in tumor-infiltrating proliferating and cytotoxic CD8 + T cells. mRBC-240 was tolerated and showed no evidence of hepatic injury at the highest feasible dose, compared with a 4-1BB agonistic antibody. RTX-240 promotes T cell and NK cell activity in preclinical models and shows efficacy and an improved safety profile. Based on these data, RTX-240 is now being evaluated in a clinical trial.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Xiaohui Wang ◽  
Xiang Lin ◽  
Zihan Zheng ◽  
Bingtai Lu ◽  
Jun Wang ◽  
...  

AbstractInnate immunity is important for host defense by eliciting rapid anti-viral responses and bridging adaptive immunity. Here, we show that endogenous lipids released from virus-infected host cells activate lung γδ T cells to produce interleukin 17 A (IL-17A) for early protection against H1N1 influenza infection. During infection, the lung γδ T cell pool is constantly supplemented by thymic output, with recent emigrants infiltrating into the lung parenchyma and airway to acquire tissue-resident feature. Single-cell studies identify IL-17A-producing γδ T (Tγδ17) cells with a phenotype of TCRγδhiCD3hiAQP3hiCXCR6hi in both infected mice and patients with pneumonia. Mechanistically, host cell-released lipids during viral infection are presented by lung infiltrating CD1d+ B-1a cells to activate IL-17A production in γδ T cells via γδTCR-mediated IRF4-dependent transcription. Reduced IL-17A production in γδ T cells is detected in mice either lacking B-1a cells or with ablated CD1d in B cells. Our findings identify a local host-immune crosstalk and define important cellular and molecular mediators for early innate defense against lung viral infection.


Sign in / Sign up

Export Citation Format

Share Document