scholarly journals Intercomparison of Spectroradiometers for Global and Direct Solar Irradiance in the Visible Range

2003 ◽  
Vol 20 (7) ◽  
pp. 997-1010 ◽  
Author(s):  
José A. Martínez-Lozano ◽  
Maria P. Utrillas ◽  
Roberto Pedrós ◽  
Fernando Tena ◽  
Juan P. Díaz ◽  
...  

Abstract This paper presents the results of the analysis of the spectral, global, and direct solar irradiance measurements in the visible range (400–700 nm) that were made in the framework of the first Iberian UV–visible (VIS) instruments intercomparison. The instruments used in this spectral range were four spectroradiometers: three Licor 1800s equipped with different receiver optics and one Optronic 754. For the direct solar irradiance measurements the spectroradiometers were equipped with collimators with different fields of view. Parallel studies have been carried out with the data given by the spectroradiometers with their original calibration file and with the same data that is corrected, following in situ calibration of the instruments using a laboratory reference lamp. To compare the series of spectral data the relative values of mean absolute deviation (MAD) and root-mean-square deviation (rmsd) have been used. The results obtained from the measurements of global irradiance show that the Licor 1800s presented very significant differences at the beginning and at the end of the day due to the deviation from ideal cosine response of the collection optics (i.e., cosine errors). This forced the analysis to be limited to the measurements corresponding to solar elevations higher than 30°. For this solar elevation range, the results of the intercomparison between the Licor instruments, before their in situ calibration, showed differences of about 5% in the visible range. The results from the measurements of direct irradiance show that, if correction factors are considered, these deviations are reduced to 3%, and when the Licors are compared with the Optronic, the deviations are less than 2%.

2021 ◽  
Author(s):  
Juan Pesántez ◽  
Christian Birkel ◽  
Giovanny Mosquera ◽  
Pablo Peña ◽  
Viviana Arizaga ◽  
...  

<p>In-situ monitoring of the temporal variation of solutes’ (nutrients and metals) concentrations as tracers can enhance knowledge of the hydrological and biogeochemical behavior of catchments. UV-Visible spectrometry represents a relatively inexpensive and easily used tool to explore how those concentrations vary in time at high temporal frequency. However, it is not yet clear which are the best calibration methods and which solutes can be modeled with this approach. In this investigation we explored the relationship between solutes’ concentrations and wavelength absorbance in the UV-Visible range to find the best calibration method and to identify solutes that could be effectively predicted. To this end, we installed a UV–Visible spectrometer probe in a high-altitude and organic-rich tropical Andean (Páramo) stream to record the wavelength absorbance at a 5-min temporal resolution from December 2017 to March 2019. Simultaneously, we sampled stream water at 4-hour frequency for subsequent determination of solutes via ICP-MS in the laboratory. Our results show that multivariate statistical methods outperformed simpler calibration strategies to model the solutes’ concentrations that could be effectively predicted using calibration and validation datasets. Eleven out of 21 evaluated solutes (Al, DOC, Ca, Cu, K, Mg, N, Na, Rb, Si and Sr) were successfully calibrated (NSE > 0.50). This finding suggests the possibility of calibrating solutes (i.e., metals) that had not previously been calibrated through UV-Visible spectrometry in the field. Interestingly, the calibration was feasible for all solutes that presented a statistically significant correlation with dissolved organic carbon. The findings of this research provide insights into the value of in-situ operation of spectrometers to monitor water quality in organic-rich streams (e.g., peatlands). This research contributes to our understanding of aquatic ecosystems alongside assessing catchment hydrological functioning and also can enhance the protection of human water supplies.</p>


2021 ◽  
pp. 1-8
Author(s):  
Carina Wyborn ◽  
Elena Louder ◽  
Mike Harfoot ◽  
Samantha Hill

Summary Future global environmental change will have a significant impact on biodiversity through the intersecting forces of climate change, urbanization, human population growth, overexploitation, and pollution. This presents a fundamental challenge to conservation approaches, which seek to conserve past or current assemblages of species or ecosystems in situ. This review canvases diverse approaches to biodiversity futures, including social science scholarship on the Anthropocene and futures thinking alongside models and scenarios from the biophysical science community. It argues that charting biodiversity futures requires processes that must include broad sections of academia and the conservation community to ask what desirable futures look like, and for whom. These efforts confront political and philosophical questions about levels of acceptable loss, and how trade-offs can be made in ways that address the injustices in the distribution of costs and benefits across and within human and non-human life forms. As such, this review proposes that charting biodiversity futures is inherently normative and political. Drawing on diverse scholarship united under a banner of ‘futures thinking’ this review presents an array of methods, approaches and concepts that provide a foundation from which to consider research and decision-making that enables action in the context of contested and uncertain biodiversity futures.


2019 ◽  
Vol 219 ◽  
pp. 08003
Author(s):  
Maja Verstraeten

The SoLid Collaboration is currently operating a 1.6 ton neutrino detector near the Belgian BR2 reactor. Its main goal is the observation of the oscillation of electron antineutrinos to previously undetected flavour states. The highly segmented SoLid detector employs a compound scintillation technology based on PVT scintillator in combination with LiF-ZnS(Ag) screens containing the 6Li isotope. The experiment has demonstrated a channel-to-channel response that can be controlled to the level of a few percent, an energy resolution of better than 14% at 1 MeV, and a determination of the interaction vertex with a precision of 5 cm. This contribution highlights the major outcomes of the R&D program, the quality control during component manufacture and integration, the current performance and stability of the full-scale system, as well as the in-situ calibration of the detector with various radioactive sources.


2016 ◽  
Vol 824 ◽  
pp. 477-484 ◽  
Author(s):  
Miroslav Čekon ◽  
Richard Slávik ◽  
Peter Juras

Solar radiation exposure and its monitoring does have not only the importance for climate science and meteorology however is equally of highly relevant use for the field of Building Science as primarily those of analyzing thermal aspects in building physics. Here the measuring of solar irradiance by means of well-established solar instruments can be applied whose advances have been undergoing steep progress. Currently, a silicon photodiode element, as a truly obtainable form, may have a feasible exploitation in the field of building applications concerning the solar radiant flux quantifying. It represents a small optoelectronic element and has a several exploitable advantages. The paper presents a perspective alternative to monitor solar irradiance. Own measurement assembly is proposed and introduced. Initial in-situ measurements are performed and final comparability with existing commercial solar instruments is presented. An obtained correlation with existing types demonstrates its applicability to the field of building science and solar energy.


2015 ◽  
Vol 7 (8) ◽  
pp. 10480-10500 ◽  
Author(s):  
Ting Chan ◽  
Derek Lichti

2014 ◽  
Vol 979 ◽  
pp. 343-346 ◽  
Author(s):  
Natthakridta Chanthima ◽  
Jakrapong Kaewkhao

Borophosphate glasses have been synthesized with a Bi2O3concentration of 15.0 to 25.0 mol%, added 2.5 mol% for each concentration, by the normal melt quenching technique at 1200 °C. The physical and optical properties of bismuth borophosphate glass systems have been studied. The glasses are characterized for their physical and optical properties. The density and molar volume of these glasses were found in the range 3.4391 to 3.9338 g/cm3and 52.2515 to 55.7557 cm3/mol, respectively. It was observed that the density and molar volume of these glasses was increased with increasing the concentration of Bi2O3. The absorption spectra of these glasses were recorded in the UV-Visible range. It has been found that, the absorption spectra were shifted to longer wavelength with higher Bi2O3concentration. In addition, the oxygen packing density of glass samples have been also investigated.


Sign in / Sign up

Export Citation Format

Share Document