scholarly journals A Binned Approach to Cloud-Droplet Riming Implemented in a Bulk Microphysics Model

2008 ◽  
Vol 47 (2) ◽  
pp. 694-703 ◽  
Author(s):  
Stephen M. Saleeby ◽  
William R. Cotton

Abstract This paper presents the development and application of a binned approach to cloud-droplet riming within a bulk microphysics model. This approach provides a more realistic representation of collision–coalescence that occurs between ice and cloud particles of various sizes. The binned approach allows the application of specific collection efficiencies, within the stochastic collection equation, for individual size bins of droplets and ice particles; this is in sharp contrast to the bulk approach that uses a single collection efficiency to describe the growth of a distribution of an ice species by collecting cloud droplets. Simulations of a winter orographic cloud event reveal a reduction in riming when using the binned riming approach and, subsequently, larger amounts of supercooled liquid water within the orographic cloud.

2021 ◽  
Author(s):  
Haoran Li ◽  
Alexei Korolev ◽  
Dmitri Moisseev

Abstract. Mixed-phase clouds are globally omnipresent and play a major role in the Earth's radiation budget and precipitation formation. The existence of liquid droplets in presence of ice particles is microphysically unstable and depends on a delicate balance of several competing processes. Understanding mechanisms that govern ice initiation and moisture supply are important to understand the life-cycle of such clouds. This study presents observations that reveal the onset of drizzle inside a ∼600 m deep mixed-phase layer embedded in a stratiform precipitation system. Using Doppler spectra analysis, we show how large supercooled liquid droplets are generated in Kelvin-Helmholtz (K-H) instability despite ice particles falling from upper cloud layers. The spectral width of supercooled liquid water mode in radar Doppler spectrum is used to identify a region of increased turbulence. The observations show that large liquid droplets, characterized by reflectivity values larger than −20 dBZ, are generated in this region. In addition to cloud droplets, Doppler spectral analysis reveals the production of the columnar ice crystals in the K-H billows. The modelling study estimates that the concentration of these ice crystals is 3 ∼ 8 L−1, which is at least one order of magnitude higher than that of primary ice nucleating particles. Given the detail of the observations, we show that multiple populations of secondary ice particles are generated in regions where larger cloud droplets are produced and not at some constant level within the cloud. It is therefore hypothesized that K-H instability provides conditions favorable for enhanced droplet growth and formation of secondary ice particles.


2021 ◽  
Vol 21 (17) ◽  
pp. 13593-13608
Author(s):  
Haoran Li ◽  
Alexei Korolev ◽  
Dmitri Moisseev

Abstract. Mixed-phase clouds are globally omnipresent and play a major role in the Earth's radiation budget and precipitation formation. The existence of liquid droplets in the presence of ice particles is microphysically unstable and depends on a delicate balance of several competing processes. Understanding mechanisms that govern ice initiation and moisture supply are important to understand the life cycle of such clouds. This study presents observations that reveal the onset of drizzle inside a ∼ 600 m deep mixed-phase layer embedded in a stratiform precipitation system. Using Doppler spectral analysis, we show how large supercooled liquid droplets are generated in Kelvin–Helmholtz (K–H) instability despite ice particles falling from upper cloud layers. The spectral width of the supercooled liquid water mode in the radar Doppler spectrum is used to identify a region of increased turbulence. The observations show that large liquid droplets, characterized by reflectivity values larger than −20 dBZ, are generated in this region. In addition to cloud droplets, Doppler spectral analysis reveals the production of columnar ice crystals in the K–H billows. The modeling study estimates that the concentration of these ice crystals is 3–8 L−1, which is at least 1 order of magnitude higher than that of primary ice-nucleating particles. Given the detail of the observations, we show that multiple populations of secondary ice particles are generated in regions where larger cloud droplets are produced and not at some constant level within the cloud. It is, therefore, hypothesized that K–H instability provides conditions favorable for enhanced droplet growth and formation of secondary ice particles.


2010 ◽  
Vol 10 (20) ◽  
pp. 9851-9861 ◽  
Author(s):  
X. Ma ◽  
K. von Salzen ◽  
J. Cole

Abstract. Satellite-based cloud top effective radius retrieved by the CERES Science Team were combined with simulated aerosol concentrations from CCCma CanAM4 to examine relationships between aerosol and cloud that underlie the first aerosol indirect (cloud albedo) effect. Evidence of a strong negative relationship between sulphate, and organic aerosols, with cloud top effective radius was found for low clouds, indicating both aerosol types are contributing to the first indirect effect on a global scale. Furthermore, effects of aerosol on the cloud droplet effective radius are more pronounced for larger cloud liquid water paths. While CanAM4 broadly reproduces the observed relationship between sulphate aerosols and cloud droplets, it does not reproduce the dependency of cloud top droplet size on organic aerosol concentrations nor the dependency on cloud liquid water path. Simulations with a modified version of the model yield a more realistic dependency of cloud droplets on organic carbon. The robustness of the methods used in the study are investigated by repeating the analysis using aerosol simulated by the GOCART model and cloud top effective radii derived from the MODIS Science Team.


2019 ◽  
Vol 19 (19) ◽  
pp. 12397-12412 ◽  
Author(s):  
Nadine Borduas-Dedekind ◽  
Rachele Ossola ◽  
Robert O. David ◽  
Lin S. Boynton ◽  
Vera Weichlinger ◽  
...  

Abstract. An organic aerosol particle has a lifetime of approximately 1 week in the atmosphere during which it will be exposed to sunlight. However, the effect of photochemistry on the propensity of organic matter to participate in the initial cloud-forming steps is difficult to predict. In this study, we quantify on a molecular scale the effect of photochemical exposure of naturally occurring dissolved organic matter (DOM) and of a fulvic acid standard on its cloud condensation nuclei (CCN) and ice nucleation (IN) activity. We find that photochemical processing, equivalent to 4.6 d in the atmosphere, of DOM increases its ability to form cloud droplets by up to a factor of 2.5 but decreases its ability to form ice crystals at a loss rate of −0.04 ∘CT50 h−1 of sunlight at ground level. In other words, the ice nucleation activity of photooxidized DOM can require up to 4 ∘C colder temperatures for 50 % of the droplets to activate as ice crystals under immersion freezing conditions. This temperature change could impact the ratio of ice to water droplets within a mixed-phase cloud by delaying the onset of glaciation and by increasing the supercooled liquid fraction of the cloud, thereby modifying the radiative properties and the lifetime of the cloud. Concurrently, a photomineralization mechanism was quantified by monitoring the loss of organic carbon and the simultaneous production of organic acids, such as formic, acetic, oxalic and pyruvic acids, CO and CO2. This mechanism explains and predicts the observed increase in CCN and decrease in IN efficiencies. Indeed, we show that photochemical processing can be a dominant atmospheric ageing process, impacting CCN and IN efficiencies and concentrations. Photomineralization can thus alter the aerosol–cloud radiative effects of organic matter by modifying the supercooled-liquid-water-to-ice-crystal ratio in mixed-phase clouds with implications for cloud lifetime, precipitation patterns and the hydrological cycle.Highlights. During atmospheric transport, dissolved organic matter (DOM) within aqueous aerosols undergoes photochemistry. We find that photochemical processing of DOM increases its ability to form cloud droplets but decreases its ability to form ice crystals over a simulated 4.6 d in the atmosphere. A photomineralization mechanism involving the loss of organic carbon and the production of organic acids, CO and CO2 explains the observed changes and affects the liquid-water-to-ice ratio in clouds.


2011 ◽  
Vol 11 (6) ◽  
pp. 17447-17472
Author(s):  
N. von Blohn ◽  
K. Diehl ◽  
S. K. Mitra ◽  
S. Borrmann

Abstract. Laboratory experiments were carried out in a vertical wind tunnel to study the retention of different atmospheric trace gases during riming. In the experiments, the rimed ice particles floated in a laminar air stream carrying a cloud of supercooled droplets with radii between 10 and 20 μm. Ice particles, dendritic ice crystals, and snow flakes with diameters between 6 mm and 1.5 cm were allowed to rime at temperatures between −5 and −12 °C where riming mainly proceeds in the atmosphere and with cloud liquid water contents between 1 and 1.5 g m−3 which are values typically found in atmospheric mixed phase clouds. Three trace species were investigated, nitric and hydrochloric acid, and hydrogen peroxide. They were present in the supercooled liquid droplets in concentrations from 1 to 120 ppmv, i.e. similar to the ones measured in cloud drops. The chemical analyses of the rimed ice particles allow to determine the trace species concentration in the ice phase. Together with the known liquid phase concentration the retention coefficients were calculated in terms of the amount of the species which remained in the ice phase after freezing. It was found that the highly soluble trace gases nitric and hydrochloric acid were retained nearly completely (98.6 ± 8 % and 99.7 ± 9 %, respectively) while for hydrogen peroxide a retention coefficient of 64.3 ± 11 % was determined. No influence of the riming temperature on the retention was found which can be explained by the fact that in the observed range of temperature and liquid water content riming proceeded in the dry growth regime.


2013 ◽  
Vol 52 (4) ◽  
pp. 834-852 ◽  
Author(s):  
Stephen M. Saleeby ◽  
William R. Cotton ◽  
Douglas Lowenthal ◽  
Joe Messina

AbstractThe Regional Atmospheric Modeling System was used to simulate four winter snowfall events over the Park Range of Colorado. For each event, three hygroscopic aerosol sensitivity simulations were performed with initial aerosol profiles representing clean, moderately polluted, and highly polluted scenarios. Previous work demonstrates that the addition of aerosols can produce a snowfall spillover effect, during events in which riming growth of snow is prevalent in the presence of supercooled liquid water, that is due to a modified orographic cloud containing more numerous but smaller cloud droplets. This study focuses on the detailed microphysical processes that lead to snow growth in each event and how these processes are modulated by the addition of hygroscopic aerosols. A conceptual model of hydrometeor growth processes is presented, along a vertical orographic transect, that reveals zones of vapor deposition of ice and liquid, riming growth, evaporation, sublimation, and regions in which the Wegener–Bergeron–Findeisen (WBF) snow growth process is active. While the aerosol-induced spillover effect is largely determined by the degree of reduction in ice particle riming, an enhancement in the WBF snow growth process under more polluted conditions largely offsets the loss of rime growth, thus leading to a minimal net change in the regional precipitation.


2009 ◽  
Vol 2 (3) ◽  
pp. 1293-1320
Author(s):  
A. Schwarzenboeck ◽  
G. Mioche ◽  
A. Armetta ◽  
A. Herber ◽  
J.-F. Gayet

Abstract. During the airborne research mission ASTAR 2004 (Arctic Study of Tropospheric Aerosols, Clouds and Radiation) performed over the island of Svalbard in the Arctic a constant-temperature hot-wire Nevzorov Probe designed for aircraft measurements, has been used onboard the aircraft POLAR 2. The Nevzorov probe measured liquid water (LWC) and total condensed water content (TWC) in supercooled liquid and partly mixed phase clouds, respectively. As for other hotwire probes the calculation of LWC and/or TWC (and thus the ice water content IWC) has to take into account the collection efficiencies of the two separate sensors for LWC and TWC which both react differently with respect to cloud phase and what is even more difficult to quantify with respect to the size of ice and liquid cloud particles. The study demonstrates that during pure liquid cloud sequences the ASTAR data set of the Nevzorov probe allowed to improve the quantification of the collection efficiency, particularly of the LWC probe part with respect to water. The improved quantification of liquid water content should lead to improved retrievals of IWC content. Simultaneous retrievals of LWC and IWC are correlated with the asymmetry factor derived from the Polar Nephelometer instrument.


2011 ◽  
Vol 68 (9) ◽  
pp. 1853-1864 ◽  
Author(s):  
Luis Ladino ◽  
Olaf Stetzer ◽  
Bodo Hattendorf ◽  
Detlef Günther ◽  
Betty Croft ◽  
...  

Abstract Collection efficiency E experiments for aerosol particles scavenged by cloud droplets were carried out in the newly built Collision Ice Nucleation Chamber (CLINCH). Pure water droplets having radii between 12.8 and 20.0 μm were allowed to fall freely and to collide in a laminar flow with lithium metaborate particles having radii between 0.05 and 0.33 μm. At the bottom of the chamber, the droplets and the particles captured were collected using a cup impactor. The collected solution was analyzed for the scavenged aerosol mass by inductively coupled plasma mass spectrometry. Evaporation of droplets was taken into account since the relative humidity inside the chamber was below 100%, resulting in final theoretical droplet sizes between 4.2 and 17.6 μm. The resulting experimental measurements were compared with theoretical values to see their correlation. The authors found an experimental trend similar to theory, as well as the “Greenfield gap” at the particle radius of 0.24 μm (E = 0.038) for the smallest cloud droplet size investigated in this study. The experimental values of collection efficiency found herein agree with those from theory within one order of magnitude, similar to previous studies reported in the literature.


2014 ◽  
Vol 71 (12) ◽  
pp. 4500-4526 ◽  
Author(s):  
Andrew Heymsfield ◽  
Paul Willis

Abstract Progress in understanding the formation of ice in lower-tropospheric clouds is slowed by the difficulties in characterizing the many complex interactions that lead to ice initiation and to the dynamic, non-steady-state nature of the clouds. The present study characterizes the conditions where secondary ice particles, specifically identified as needle or thin columnar types, are observed in tropical maritime convection with modest liquid water contents during the Ice in Clouds Experiment-Tropical (ICE-T), based out of St. Croix, U.S. Virgin Islands, and the NASA African Monsoon Multidisciplinary Analyses (NAMMA) in 2006 sampling from Cape Verde, Africa. The properties of the cloud droplet populations relevant to the secondary ice production process and the ice particle populations are characterized as a function of temperature and vertical velocity. These secondary ice particles are observed primarily in regions of low liquid water content and weak vertical velocities. Two situations are examined in detail. First, ice formation is examined by following the tops of a group of ICE-T chimney clouds as they ascend and cool from a temperature of +7° to −8°C, examining the production of the first ice. Then, using the data from a cloud system sampled during NAMMA, the authors elucidate a process that promotes ice multiplication. The intention is that this study will lead both to a better understanding of how secondary ice production proceeds in natural clouds and to more realistic laboratory studies of the processes involved.


Sign in / Sign up

Export Citation Format

Share Document