Four Years of Tropical ERA-40 Vorticity Maxima Tracks. Part II: Differences between Developing and Nondeveloping Disturbances

2009 ◽  
Vol 137 (8) ◽  
pp. 2576-2591 ◽  
Author(s):  
Brandon Kerns ◽  
Edward Zipser

Abstract Using a subset of the relative vorticity maxima (VM) tracks described in Part I, large-scale environmental fields, cold cloud area, and rainfall area are used to discriminate between developing and nondeveloping tropical disturbances in the eastern North Pacific (EPAC) and Atlantic Oceans. By using a minimum cold cloud coverage requirement, the nondeveloping VM are limited to disturbances with enhanced low-level relative vorticity and widespread deep convection. Linear discriminant analysis is used to determine the overall discrimination and the relative importance of each predictor for each basin separately. It is important to distinguish the two basins because, for many predictors, the differences between the basins are greater than the differences between developing and nondeveloping VM in each basin. Using the parametric forecast method, there is greater discrimination and prediction skill in the EPAC than in the Atlantic. There are also significant differences between the two basins in terms of the degree of discrimination provided by each of the predictors. Surprisingly, the mean vertical wind shear magnitude is greater for EPAC developing VM than for EPAC nondeveloping VM. Incorporating the satellite-derived predictors marginally improves the potential forecast skill in the EPAC but not in the Atlantic. The prediction skill (Heidke skill score) of tropical cyclogenesis in the Atlantic is similar to what has been obtained in previous studies using cloud cluster tracks. There is greater predictive skill in the EPAC.

2015 ◽  
Vol 54 (7) ◽  
pp. 1413-1429 ◽  
Author(s):  
Haikun Zhao ◽  
Ryuji Yoshida ◽  
G. B. Raga

AbstractThe intraseasonal variability of tropical cyclogenesis in the western North Pacific (WNP) basin is explored in this study. The relation of cyclogenesis in each of the five large-scale patterns identified in recent work by Yoshida and Ishikawa is associated with the Madden–Julian oscillation (MJO). Confirming previous results, more events of cyclogenesis are found during the active MJO phase in the WNP. Furthermore, results indicate that most of the tropical cyclogenesis is associated with the monsoon shear line large-scale pattern during the active phase. The genesis potential index (GPI) and its individual components are used to evaluate the environmental factors that most contribute toward cyclogenesis under the different phases of the MJO. GPI exhibits a large positive anomaly during the active phase of the MJO, and such an anomaly is spatially correlated with the events of cyclogenesis. The analysis of each factor indicates that low-level relative vorticity and midlevel relative humidity are the two dominant contributors to the MJO-composited GPI anomalies. The positive GPI anomalies during the active phase are partially offset by the negative contributions from vertical wind shear and potential intensity. This is valid for all five large-scale patterns. It is noteworthy that the easterly wave (EW) large-scale pattern, while exhibiting the same influence of relative vorticity and midlevel humidity contributing toward positive GPI anomalies, presents slightly more cyclogenesis events under the inactive phase of the MJO. This unexpected result suggests that other factors not included in the definition of the GPI and/or changes in environmental flows on other time scales contribute to the tropical cyclogenesis associated with the EW large-scale pattern.


2018 ◽  
Vol 31 (15) ◽  
pp. 6209-6227 ◽  
Author(s):  
Xianan Jiang ◽  
Baoqiang Xiang ◽  
Ming Zhao ◽  
Tim Li ◽  
Shian-Jiann Lin ◽  
...  

Motivated by increasing demand in the community for intraseasonal predictions of weather extremes, predictive skill of tropical cyclogenesis is investigated in this study based on a global coupled model system. Limited intraseasonal cyclogenesis prediction skill with a high false alarm rate is found when averaged over about 600 tropical cyclones (TCs) over global oceans from 2003 to 2013, particularly over the North Atlantic (NA). Relatively skillful genesis predictions with more than 1-week lead time are only evident for about 10% of the total TCs. Further analyses suggest that TCs with relatively higher genesis skill are closely associated with the Madden–Julian oscillation (MJO) and tropical synoptic waves, with their geneses strongly phase-locked to the convectively active region of the MJO and low-level cyclonic vorticity associated with synoptic-scale waves. Moreover, higher cyclogenesis prediction skill is found for TCs that formed during the enhanced periods of strong MJO episodes than those during weak or suppressed MJO periods. All these results confirm the critical role of the MJO and tropical synoptic waves for intraseasonal prediction of TC activity. Tropical cyclogenesis prediction skill in this coupled model is found to be closely associated with model predictability of several large-scale dynamical and thermodynamical fields. Particularly over the NA, higher predictability of low-level relative vorticity, midlevel humidity, and vertical zonal wind shear is evident along a tropical belt from the West Africa coast to the Caribbean Sea, in accord with more predictable cyclogenesis over this region. Over the extratropical NA, large-scale variables exhibit less predictability due to influences of extratropical systems, leading to poor cyclogenesis predictive skill.


2008 ◽  
Vol 21 (5) ◽  
pp. 1083-1103 ◽  
Author(s):  
Hamish A. Ramsay ◽  
Lance M. Leslie ◽  
Peter J. Lamb ◽  
Michael B. Richman ◽  
Mark Leplastrier

Abstract This study investigates the role of large-scale environmental factors, notably sea surface temperature (SST), low-level relative vorticity, and deep-tropospheric vertical wind shear, in the interannual variability of November–April tropical cyclone (TC) activity in the Australian region. Extensive correlation analyses were carried out between TC frequency and intensity and the aforementioned large-scale parameters, using TC data for 1970–2006 from the official Australian TC dataset. Large correlations were found between the seasonal number of TCs and SST in the Niño-3.4 and Niño-4 regions. These correlations were greatest (−0.73) during August–October, immediately preceding the Australian TC season. The correlations remain almost unchanged for the July–September period and therefore can be viewed as potential seasonal predictors of the forthcoming TC season. In contrast, only weak correlations (<+0.37) were found with the local SST in the region north of Australia where many TCs originate; these were reduced almost to zero when the ENSO component of the SST was removed by partial correlation analysis. The annual frequency of TCs was found to be strongly correlated with 850-hPa relative vorticity and vertical shear of the zonal wind over the main genesis areas of the Australian region. Furthermore, correlations between the Niño SST and these two atmospheric parameters exhibited a strong link between the Australian region and the Niño-3.4 SST. A principal component analysis of the SST dataset revealed two main modes of Pacific Ocean SST variability that match very closely with the basinwide patterns of correlations between SST and TC frequencies. Finally, it is shown that the correlations can be increased markedly (e.g., from −0.73 to −0.80 for the August–October period) by a weighted combination of SST time series from weakly correlated regions.


2013 ◽  
Vol 70 (4) ◽  
pp. 1023-1034 ◽  
Author(s):  
Liguang Wu ◽  
Huijun Zong ◽  
Jia Liang

Abstract Large-scale monsoon gyres and the involved tropical cyclone formation over the western North Pacific have been documented in previous studies. The aim of this study is to understand how monsoon gyres affect tropical cyclone formation. An observational study is conducted on monsoon gyres during the period 2000–10, with a focus on their structures and the associated tropical cyclone formation. A total of 37 monsoon gyres are identified in May–October during 2000–10, among which 31 monsoon gyres are accompanied with the formation of 42 tropical cyclones, accounting for 19.8% of the total tropical cyclone formation. Monsoon gyres are generally located on the poleward side of the composited monsoon trough with a peak occurrence in August–October. Extending about 1000 km outward from the center at lower levels, the cyclonic circulation of the composited monsoon gyre shrinks with height and is replaced with negative relative vorticity above 200 hPa. The maximum winds of the composited monsoon gyre appear 500–800 km away from the gyre center with a magnitude of 6–10 m s−1 at 850 hPa. In agreement with previous studies, the composited monsoon gyre shows enhanced southwesterly flow and convection on the south-southeastern side. Most of the tropical cyclones associated with monsoon gyres are found to form near the centers of monsoon gyres and the northeastern end of the enhanced southwesterly flows, accompanying relatively weak vertical wind shear.


2009 ◽  
Vol 22 (14) ◽  
pp. 3877-3893 ◽  
Author(s):  
Savin S. Chand ◽  
Kevin J. E. Walsh

Abstract This study examines the variations in tropical cyclone (TC) genesis positions and their subsequent tracks for different phases of the El Niño–Southern Oscillation (ENSO) phenomenon in the Fiji, Samoa, and Tonga region (FST region) using Joint Typhoon Warning Center best-track data. Over the 36-yr period from 1970/71 to 2005/06, 122 cyclones are observed in the FST region. A large spread in the genesis positions is noted. During El Niño years, genesis is enhanced east of the date line, extending from north of Fiji to over Samoa, with the highest density centered around 10°S, 180°. During neutral years, maximum genesis occurs immediately north of Fiji with enhanced genesis south of Samoa. In La Niña years, there are fewer cyclones forming in the region than during El Niño and neutral years. During La Niña years, the genesis positions are displaced poleward of 12°S, with maximum density centered around 15°S, 170°E and south of Fiji. The cyclone tracks over the FST region are also investigated using cluster analysis. Tracks during the period 1970/71–2005/06 are conveniently described using three separate clusters, with distinct characteristics associated with different ENSO phases. Finally, the role of large-scale environmental factors affecting interannual variability of TC genesis positions and their subsequent tracks in the FST region are investigated. Favorable genesis positions are observed where large-scale environments have the following seasonal average thresholds: (i) 850-hPa cyclonic relative vorticity between −16 and −4 (×10−6 s−1), (ii) 200-hPa divergence between 2 and 8 (×10−6 s−1), and (iii) environmental vertical wind shear between 0 and 8 m s−1. The subsequent TC tracks are observed to be steered by mean 700–500-hPa winds.


2020 ◽  
pp. 1
Author(s):  
Shaohua Chen ◽  
Haikun Zhao ◽  
Graciela B. Raga ◽  
Philip J. Klotzbach

AbstractThis study highlights the distinct modulation of May-October tropical cyclones (TCs) in the western North Pacific (WNP), eastern North Pacific (ENP) and North Atlantic (NATL) basins by tropical trans-basin variability (TBV) and ENSO. The pure TBV significantly modulates total TC counts in all three basins, with more TCs in the WNP and ENP and fewer TCs in the NATL during warm TBV years and fewer TCs in the WNP and ENP and more TCs in the NATL during cold TBV years. By contrast, the pure ENSO signal shows no impact on total TC count over any of the three basins. These results are consistent with changes in large scale factors associated with TBV and ENSO. Low-level relative vorticity (VOR) is an important driver of WNP TC genesis frequency, with broad agreement between the observed spatial distribution of TC genesis and TBV/ENSO-associated VOR anomalies. TBV significantly affects ENP TC frequency due to changes in basin wide vertical wind shear and sea surface temperatures, while the modulation in TC frequency by ENSO is primarily caused by a north-south dipole modulation of large-scale atmospheric and oceanic factors. The pure TBV-related low-level VOR changes appear to be the most important factor modulating NATL TC frequency. Changes in large-scale factors compare well with the budget of synoptic-scale eddy kinetic energy. Possible physical processes associated with pure TBV and pure ENSO that modulate TC frequency are further discussed. This study contributes to the understanding of TC inter-annual variability and could thus be helpful for seasonal TC forecasting.


2016 ◽  
Vol 29 (18) ◽  
pp. 6727-6749 ◽  
Author(s):  
Young-Kwon Lim ◽  
Siegfried D. Schubert ◽  
Oreste Reale ◽  
Andrea M. Molod ◽  
Max J. Suarez ◽  
...  

Abstract Interannual variations in seasonal tropical cyclone (TC) activity (e.g., genesis frequency and location, track pattern, and landfall) over the Atlantic are explored by employing observationally constrained simulations with the NASA Goddard Earth Observing System, version 5 (GEOS-5), atmospheric general circulation model. The climate modes investigated are El Niño–Southern Oscillation (ENSO), the North Atlantic Oscillation (NAO), and the Atlantic meridional mode (AMM). The results show that the NAO and AMM can strongly modify and even oppose the well-known ENSO impacts, like in 2005, when a strong positive AMM (associated with warm SSTs and a negative SLP anomaly over the western tropical Atlantic) led to a very active TC season with enhanced TC genesis over the Caribbean Sea and a number of landfalls over North America, under a neutral ENSO condition. On the other end, the weak TC activity during 2013 (characterized by weak negative Niño index) appears caused by a NAO-induced positive SLP anomaly with enhanced vertical wind shear over the tropical North Atlantic. During 2010, the combined impact of the three modes produced positive SST anomalies across the entire low-latitudinal Atlantic and a weaker subtropical high, leading to more early recurvers and thus fewer landfalls despite enhanced TC genesis. The study provides evidence that TC number and track are very sensitive to the relative phases and intensities of these three modes and not just to ENSO alone. Examination of seasonal predictability reveals that the predictive skill of the three modes is limited over tropics to subtropics, with the AMM having the highest predictability over the North Atlantic, followed by ENSO and NAO.


2013 ◽  
Vol 70 (7) ◽  
pp. 1912-1928 ◽  
Author(s):  
Christopher A. Davis ◽  
David A. Ahijevych

Abstract Conditional composites of dropsondes deployed into eight tropical Atlantic weather systems during 2010 are analyzed. The samples are conditioned based on cloud-top temperature within 10 km of the dropsonde, the radius from the cyclonic circulation center of the disturbance, and the stage of system development toward tropical cyclogenesis. Statistical tests are performed to identify significant differences between composite profiles. Cold-cloud-region-composite profiles of virtual temperature deviations from a large-scale instantaneous average indicate enhanced static stability prior to genesis within 200 km of the center of circulation, with negative anomalies below 700 hPa and larger warm anomalies above 600 hPa. Moist static energy is enhanced in the middle troposphere in this composite mainly because of an increase in water vapor content. Prior to genesis the buoyancy of lifted parcels within 200 km of the circulation center is sharply reduced compared to the buoyancy of parcels farther from the center. These thermodynamic characteristics support the conceptual model of an altered mass flux profile prior to genesis that strongly favors convergence in the lower troposphere and rapid increase of circulation near the surface. It is also noted that the air–sea temperature difference is greatest in the inner core of the pregenesis composite, which suggests a means to preferentially initiate new convection in the inner core where the rotation is greatest.


Author(s):  
Edward Maru ◽  
Taiga Shibata ◽  
Kosuke Ito

This paper examines the tropical cyclone (TC) activity in Solomon Islands (SI) using the best track data from Tropical Cyclone Warning Centre Brisbane and Regional Specialized Meteorological Centre Nadi. The long-term trend analysis showed that the frequency of TCs has been decreasing in this region while average TC intensity becomes strong. Then, the datasets were classified according to the phase of Madden-Julian Oscillation (MJO) and the index of El Nino Southern Oscillation (ENSO) provided by Bureau of Meteorology. The MJO has sufficiently influenced TC activity in the SI region with more genesis occurring in phases 6-8, in which the lower outgoing longwave radiation indicates enhanced convective activity. In contrast, TC genesis occurs less frequently in phases 1, 2, and 5. As for the influence of ENSO, more TCs are generated in El Nino period. The TC genesis locations during El Nino (La Nina) period were significantly displaced to the north (south) over SI region. TCs generated during El Nino condition tended to be strong. This paper also argues the modulation in terms of seasonal climatic variability of large-scale environmental conditions such as sea surface temperature, low level relative vorticity, vertical wind shear, and upper level divergence.


2007 ◽  
Vol 64 (9) ◽  
pp. 3195-3213 ◽  
Author(s):  
K. J. Tory ◽  
N. E. Davidson ◽  
M. T. Montgomery

Abstract This is the third of a three-part investigation into tropical cyclone (TC) genesis in the Australian Bureau of Meteorology’s Tropical Cyclone Limited Area Prediction System (TC-LAPS), an operational numerical weather prediction (NWP) forecast model. In Parts I and II, a primary and two secondary vortex enhancement mechanisms were illustrated, and shown to be responsible for TC genesis in a simulation of TC Chris. In this paper, five more TC-LAPS simulations are investigated: three developing and two nondeveloping. In each developing simulation the pathway to genesis was essentially the same as that reported in Part II. Potential vorticity (PV) cores developed through low- to middle-tropospheric vortex enhancement in model-resolved updraft cores (primary mechanism) and interacted to form larger cores through diabatic upscale vortex cascade (secondary mechanism). On the system scale, vortex intensification resulted from the large-scale mass redistribution forced by the upward mass flux, driven by diabatic heating, in the updraft cores (secondary mechanism). The nondeveloping cases illustrated that genesis can be hampered by (i) vertical wind shear, which may tilt and tear apart the PV cores as they develop, and (ii) an insufficient large-scale cyclonic environment, which may fail to sufficiently confine the warming and enhanced cyclonic winds, associated with the atmospheric adjustment to the convective updrafts. The exact detail of the vortex interactions was found to be unimportant for qualitative genesis forecast success. Instead the critical ingredients were found to be sufficient net deep convection in a sufficiently cyclonic environment in which vertical shear was less than some destructive limit. The often-observed TC genesis pattern of convection convergence, where the active convective regions converge into a 100-km-diameter center, prior to an intense convective burst and development to tropical storm intensity is evident in the developing TC-LAPS simulations. The simulations presented in this study and numerous other simulations not yet reported on have shown good qualitative forecast success. Assuming such success continues in a more rigorous study (currently under way) it could be argued that TC genesis is largely predictable provided the large-scale environment (vorticity, vertical shear, and convective forcing) is sufficiently resolved and initialized.


Sign in / Sign up

Export Citation Format

Share Document