Raindrop Size Distributions and Rain Characteristics in California Coastal Rainfall for Periods with and without a Radar Bright Band

2008 ◽  
Vol 9 (3) ◽  
pp. 408-425 ◽  
Author(s):  
Brooks E. Martner ◽  
Sandra E. Yuter ◽  
Allen B. White ◽  
Sergey Y. Matrosov ◽  
David E. Kingsmill ◽  
...  

Abstract Recent studies using vertically pointing S-band profiling radars showed that coastal winter storms in California and Oregon frequently do not display a melting-layer radar bright band and inferred that these nonbrightband (NBB) periods are characterized by raindrop size spectra that differ markedly from those of brightband (BB) periods. Two coastal sites in northern California were revisited in the winter of 2003/04 in this study, which extends the earlier work by augmenting the profiling radar observations with collocated raindrop disdrometers to measure drop size distributions (DSD) at the surface. The disdrometer observations are analyzed for more than 320 h of nonconvective rainfall. The new measurements confirm the earlier inferences that NBB rainfall periods are characterized by greater concentrations of small drops and smaller concentrations of large drops than BB periods. Compared with their BB counterparts, NBB periods had mean values that were 40% smaller for mean-volume diameter, 32% smaller for rain intensity, 87% larger for total drop concentration, and 81% larger (steeper) for slope of the exponential DSDs. The differences are statistically significant. Liquid water contents differ very little, however, for the two rain types. Disdrometer-based relations between radar reflectivity (Z) and rainfall intensity (R) at the site in the Coast Range Mountains were Z = 168R1.58 for BB periods and Z = 44R1.91 for NBB. The much lower coefficient, which is characteristic of NBB rainfall, is poorly represented by the Z–R equations most commonly applied to data from the operational network of Weather Surveillance Radar-1988 Doppler (WSR-88D) units, which underestimate rain accumulations by a factor of 2 or more when applied to nonconvective NBB situations. Based on the observed DSDs, it is also concluded that polarimetric scanning radars may have some limited ability to distinguish between regions of BB and NBB rainfall using differential reflectivity. However, differential-phase estimations of rain intensity are not useful for NBB rain, because the drops are too small and nearly spherical. On average, the profiler-measured echo tops were 3.2 km lower in NBB periods than during BB periods, and they extended only about 1 km above the 0°C altitude. The findings are consistent with the concept that precipitation processes during BB periods are dominated by ice processes in deep cloud layers associated with synoptic-scale forcing, whereas the more restrained growth of hydrometeors in NBB periods is primarily the result of orographically forced condensation and coalescence processes in much shallower clouds.

2005 ◽  
Vol 44 (7) ◽  
pp. 1146-1151 ◽  
Author(s):  
Axel Seifert

Abstract The relation between the slope and shape parameters of the raindrop size distribution parameterized by a gamma distribution is examined. The comparison of results of a simple rain shaft model with an empirical relation based on disdrometer measurements at the surface shows very good agreement, but a more detailed discussion reveals some difficulties—for example, deviations from the gamma shape and the overestimation of collisional breakup.


2008 ◽  
Vol 47 (7) ◽  
pp. 1929-1939 ◽  
Author(s):  
Carlton W. Ulbrich ◽  
David Atlas

Abstract Raindrop size distributions (DSDs) for tropical convective storms are used to examine the relationships between the parameters of a gamma DSD, with special emphasis on their variation with the stage of the storm. Such a distinction has rarely been made before. Several storms from a variety of tropical locations are divided into storm stages according to the temporal dependence of their reflectivity factor Z, rainfall rate R, and median volume diameter D0. In most cases it is found that the DSD parameter D0 is approximately constant in time during the convective, or C, stage, which leads to a Z–R relation of the form Z = AR, that is, a linear relationship between Z and R. This finding implies the existence of equilibrium DSDs during the C stage. The convective stage is sometimes marked by pulsations in draft strength so that D0, R, and Z and associated values of the shape parameter μ decrease in a quasi-transition stage before increasing once more. Theoretical relations between the differential reflectivity ZDR and the ratio Z/R as functions of the DSD parameter μ are derived by assuming a gamma DSD and an accurate raindrop fall speed law. It is found that data derived from disdrometer observations lie along a μ = 5 isopleth for tropical continental C stages (Puerto Rico and Brazil) and along a μ = 12 isopleth for tropical maritime C stages [Tropical Ocean and Global Atmosphere Coupled Ocean–Atmosphere Response Experiment (TOGA COARE)]. Small values of μ that occur in the weak updraft intervals do not impact the rainfall measurements because they correspond to relatively small R. The latter features imply that the measurement of rainfall for the convective stages can be performed with standard polarimetry involving only two measurables rather than three, provided knowledge of μ is available a priori. A new rain parameter diagram is presented in which isopleths of the generalized number concentration and D0 are superimposed on the Z–R plot. It is proposed that it is possible to estimate D0 from climatological and observable storm structural features, which, with Z, provide estimates of R. Such an approach is necessary for use with conventional radars until polarimetric radars are more widely available.


2018 ◽  
Vol 35 (6) ◽  
pp. 1169-1180 ◽  
Author(s):  
Sanja B. Manić ◽  
Merhala Thurai ◽  
V. N. Bringi ◽  
Branislav M. Notaroš

AbstractTwo-dimensional video disdrometer (2DVD) data from a line convection rain event are analyzed using the method of moments surface integral equation (MoM-SIE) via drop-by-drop polarimetric scattering calculations at C band that are compared with radar measurements. Drop geometry of asymmetric drop shapes is reconstructed from 2DVD measurements, and the MoM-SIE model is created by meshing the surface of the drop. The differential reflectivity Zdr calculations for an example asymmetric drop are validated against an industry standard code solution at C band, and the azimuthal dependence of results is documented. Using the MoM-SIE analysis on 2DVD drop-by-drop data (also referred to as simply MoM-SIE), the radar variables [Zh, Zdr, Kdp, ρhv] are computed as a function of time (with 1-min resolution) and compared to C-band radar measurements. The importance of shape variability of asymmetric drops is demonstrated by comparing with the traditional (or “bulk”) method, which uses 1-min averaged drop size distributions and equilibrium oblate shapes. This was especially pronounced for ρhv, where the MoM-SIE method showed lowered values (dip) during the passage of the line convection consistent with radar measurements, unlike the bulk method. The MoM-SIE calculations of [Zh, Zdr, Kdp] agree very well with the radar measurements, whereas linear depolarization ratio (LDR) calculations from the drop-by-drop method are found to be larger than the values from the bulk method, which is consistent with the dip in simulated and radar-measured ρhv. Our calculations show the importance of the variance of shapes resulting from asymmetric drops in the calculation of ρhv and LDR.


1996 ◽  
Vol 35 (10) ◽  
pp. 1688-1701 ◽  
Author(s):  
A. Huggel ◽  
W. Schmid ◽  
A. Waldvogel

2017 ◽  
Vol 56 (4) ◽  
pp. 877-896 ◽  
Author(s):  
Merhala Thurai ◽  
Patrick Gatlin ◽  
V. N. Bringi ◽  
Walter Petersen ◽  
Patrick Kennedy ◽  
...  

AbstractAnalysis of drop size distributions (DSD) measured by collocated Meteorological Particle Spectrometer (MPS) and a third-generation, low-profile, 2D-video disdrometer (2DVD) are presented. Two events from two different regions (Greeley, Colorado, and Huntsville, Alabama) are analyzed. While the MPS, with its 50-μm resolution, enabled measurements of small drops, typically for drop diameters below about 1.1 mm, the 2DVD provided accurate measurements for drop diameters above 0.7 mm. Drop concentrations in the 0.7–1.1-mm overlap region were found to be in excellent agreement between the two instruments. Examination of the combined spectra clearly reveals a drizzle mode and a precipitation mode. The combined spectra were analyzed in terms of the DSD parameters, namely, the normalized intercept parameter NW, the mass-weighted mean diameter Dm, and the standard deviation of mass spectrum σM. The inclusion of small drops significantly affected the NW and the ratio σM/Dm toward higher values relative to using the 2DVD-based spectra alone. For each of the two events, polarimetric radar data were used to characterize the variation of radar-measured reflectivity Zh and differential reflectivity Zdr with Dm from the combined spectra. In the Greeley event, this variation at S band was well captured for small values of Dm (<0.5 mm) where measured Zdr tended to 0 dB but Zh showed a noticeable decrease with decreasing Dm. For the Huntsville event, an overpass of the Global Precipitation Measurement mission Core Observatory satellite enabled comparison of satellite-based dual-frequency radar retrievals of Dm with ground-based DSD measurements. Small differences were found between the satellite-based radar retrievals and disdrometers.


2007 ◽  
Vol 24 (6) ◽  
pp. 1008-1018 ◽  
Author(s):  
Dmitri N. Moisseev ◽  
V. Chandrasekar

This paper presents a method to retrieve raindrop size distributions (DSD) from slant profile dual-polarization Doppler spectra observations. It is shown that using radar measurements taken at a high elevation angle raindrop size distributions can be retrieved without making an assumption on the form of a DSD. In this paper it is shown that drop size distributions can be retrieved from Doppler power spectra by compensating for the effect of spectrum broadening and mean velocity shift. To accomplish that, spectrum deconvolution is used where the spectral broadening kernel width and wind velocity are estimated from spectral differential reflectivity measurements. Since convolution kernel is estimated from dual-polarization Doppler spectra observations and does not require observation of a clear-air signal, this method can be used by most radars capable of dual-polarization spectra measurements. To validate the technique, sensitivity of this method to the underlying assumptions and calibration errors is evaluated on realistic simulations of radar observations. Furthermore, performance of the method is illustrated on Colorado State University–University of Chicago–Illinois State Water Survey radar (CSU–CHILL) measurements of stratiform precipitation.


2014 ◽  
Vol 31 (7) ◽  
pp. 1557-1563 ◽  
Author(s):  
M. Thurai ◽  
P. T. May ◽  
A. Protat

Abstract The effect of ship motion on shipborne polarimetric radar measurements is considered at C band. Calculations are carried out by (i) varying the “effective” mean canting angle and (ii) separately examining the elevation dependence. Scattering from a single oblate hydrometeor is considered at first. Equations are derived (i) to convert the measured differential reflectivity for nonzero mean canting angles to those for zero mean canting angle and (ii) to do the corresponding corrections for nonzero elevation angles. Scattering calculations are also performed using the T-matrix method with measured drop size distributions as input. Dependence on mean volume diameter is examined as well as variations of the four main polarimetric parameters. The results show that as long as the ship movement is limited to a roll of less than about 10°–15°, the effects are tolerable. Furthermore, the results from the scattering simulations have been used to provide equations for correction factors that can be applied to compensate for the “apparent” nonzero canting angles and nonzero elevation angles, so that drop size distribution parameters and rainfall rates can be estimated without any bias.


2005 ◽  
Vol 22 (4) ◽  
pp. 433-442 ◽  
Author(s):  
Takahisa Kobayashi ◽  
Ahoro Adachi

Abstract An efficient iterative retrieval method for arbitrarily shaped raindrop size distributions (ITRAN) is developed for Doppler spectra measured with a wind profiler. A measured Doppler spectrum is a convolution of the precipitation spectrum and the turbulent spectrum. Deconvolution of the Doppler spectra is achieved through repeated convolutions. The developed method assumes no prior shape of drop size distributions and automatically obtains raindrop size distributions; additionally, it can be applied to large data volumes. Furthermore, it is insensitive to initial values. The method was applied to both simulated and observed spectra. Derived drop size distributions agree with simulated values. Narrower turbulent spectral widths yield better results. Integral values of median volume diameter (D0), liquid water content (LWC), and radar reflectivity factor are estimated with errors of less than 10%. Accurate vertical profiles of raindrop size distributions result when this method is applied to wind profiler data. The technique performed very well with most observed spectra. Some recovered spectra departed from the corresponding measured spectra, for cases in which a clear-air peak could not be accurately reproduced because of uncertainties in the location of the minimum position between the clear-air echo and the precipitation echo. Statistical relationships between LWC and integral rainfall parameters yield interesting features. The median volume diameter is statistically independent of the LWC and is associated with the large variability of the total number of drops, NT, between events. Vertical profiles from one event show a clear inverse relationship between NT and D0


2007 ◽  
Vol 24 (5) ◽  
pp. 847-855 ◽  
Author(s):  
Dmitri N. Moisseev ◽  
V. Chandrasekar

Abstract Raindrop size distributions are often assumed to follow a three-parameter gamma distribution. Since rain intensity retrieval from radar observations is an underdetermined problem, there is great interest in finding physical correlations between the parameters of the gamma distribution. One of the more common approaches is to measure naturally occurring drop size distributions (DSDs) using a disdrometer and to find DSD parameters by fitting a gamma distribution to these observations. Often the method of moments is used to retrieve the parameters of a gamma distribution from disdrometer observations. In this work the effect of the method of moments and data filtering on the relation between the parameters of the DSD is investigated, namely, the shape μ and the slope Λ parameters. For this study the disdrometer observations were simulated. In these simulations the gamma distribution parameters Nw, D0, and μ were randomly selected from a wide range of values that are found in rainfall. Then, using simulated disdrometer measurements, DSD parameters were estimated using the method of moments. It is shown that the statistical errors associated with data filtering of disdrometer measurements might produce a spurious relation between μ and Λ parameters. It is also shown that three independent disdrometer measurements can be used to verify the existence of such a relation.


2010 ◽  
Vol 27 (5) ◽  
pp. 829-842 ◽  
Author(s):  
Gerhard Peters ◽  
Bernd Fischer ◽  
Marco Clemens

Abstract The classical rain attenuation correction scheme of Hitschfeld and Bordan (HIBO) and the newer iterative approach by Hildebrand (HL) are reconsidered. Although the motivation for the HL algorithm was an extension into ranges, where HIBO tends to be unstable, it is shown here that the contrary is the case. The finite-range resolution causes an intrinsic instability of HL already at moderate attenuation, where HIBO would still deliver stable results. Therefore, the authors concentrate the further analysis on HIBO, and confirm that the usual implementation of HIBO does not account correctly for finite-range resolution. They suggest a modified scheme that produces exact retrievals in the ideal case of perfect measurements. For vertically pointing Doppler radars a new element is explored in the attenuation correction—namely, calculating rain attenuation κ and rainfall R from Doppler spectra via the raindrop size distributions (RSDs). Although this spectral scheme (SIBO) avoids the uncertainty of Z–R and Z–κ relations, the superiority of this approach is not a priori obvious because of its sensitivity to vertical wind. Therefore, radar rain rates, based on a Z–R relation and on RSDs, respectively, are compared with in situ measurements. The results indicate better agreement for RSD-based retrievals. Because κ is closely correlated with R, the authors assert the advantage of RSD-based retrievals of κ. The application of HIBO and SIBO to real data shows that the uncertainty of standard Z–R relations is the main source of deviation between the two versions. In addition, the comparison of profiles suggests that the parameters of Z–R relations aloft can deviate considerably from near-surface values. Although artifacts cannot be excluded with certainty, there is some evidence that this observation actually reflects microphysical processes.


Sign in / Sign up

Export Citation Format

Share Document