A Vortex-Based Perspective of Eastern Pacific Tropical Cyclone Formation

2008 ◽  
Vol 136 (7) ◽  
pp. 2461-2477 ◽  
Author(s):  
Christopher Davis ◽  
Chris Snyder ◽  
Anthony C. Didlake

Abstract Tropical cyclone formation over the eastern Pacific during 2005 and 2006 was examined using primarily global operational analyses from the National Centers for Environmental Prediction. This paper represents a “vortex view” of genesis, adding to previous work on tropical cyclone formation associated with tropical waves. Between 1 July and 30 September during 2005 and 2006, vortices at 900 hPa were tracked and vortex-following diagnostic quantities were computed. Vortices were more abundant during periods of an enhanced “Hadley” circulation with monsoon westerlies around 10°N in the lower troposphere. This zonally confined Hadley circulation was significantly stronger during the genesis of developing vortices. Developing vortices were stronger at the outset, with a deeper potential vorticity maximum, compared to nondeveloping vortices. This implies that developing disturbances were selected early on by favorable synoptic-scale features. The characteristic time-mean reversal of the meridional gradient of absolute vorticity in the lower troposphere was found to nearly vanish when the aggregate contribution of strong vortices was removed from the time-mean vorticity. This finding implies that it is difficult to unambiguously attribute development to a preexisting enhancement of vorticity on the synoptic scale. The time-mean enhancement of cyclonic vorticity primarily results from the accumulated effect of vortices. It is suggested that horizontal deformation in the background state helps distinguish developing vortices from nondevelopers, and also biases the latitude of development poleward of the climatological ITCZ axis.

2018 ◽  
Vol 75 (12) ◽  
pp. 4229-4246
Author(s):  
Georgina Paull ◽  
Konstantinos Menelaou ◽  
M. K. Yau

Abstract Latent heat release from condensational heating has been recognized as one of the dominating energy sources of a tropical cyclone. Here we argue that other microphysical processes may also play an important role. From an analysis of a real-case simulation of Hurricane Katrina (2005), it was found that cooling from evaporation and melting of some frozen hydrometeors radially outside the eyewall region can have similar magnitudes as condensational heating. Based on this finding, idealized thermally forced experiments were performed. The specified heating and cooling functions mimic those found in the Hurricane Katrina run. The results indicated that the addition of cooling enhances the lower-level inward radial winds, which in turn increases the acceleration of the lower-level tangential winds through an enhanced transport of absolute vorticity. Sensitivity experiments on varying the structure of the cooling functions and the background state of the vortex demonstrate that the lower-level tangential wind acceleration is more sensitive to changes in the vertical structure and location of the cooling than the radial characteristics. In addition, the lower-level acceleration is sensitive to variations in the inertial and static stabilities rather than the vertical tangential wind shear of the initial vortex and its environment.


2012 ◽  
Vol 140 (11) ◽  
pp. 3634-3652 ◽  
Author(s):  
Bryce Tyner ◽  
Anantha Aiyyer

Abstract The evolution of African easterly waves (AEWs) leading to tropical cyclones (TCs) in the Atlantic during 2000–08 is examined from isentropic potential vorticity (PV) and Lagrangian streamline perspectives. Tropical cyclone formation is commonly preceded by axisymmetrization of PV, scale contraction of the wave, and formation of a closed circulation within the wave. In these cases, PV associated with the synoptic-scale wave is irreversibly deformed and subsumed within the developing vortex. Less commonly, filamentation of the PV leads to separation and independent propagation of the wave and the TC vortex. In an example presented here, the remnant wave with a closed circulation persisted for several days after separation from the TC. A second TC did not result, consistent with several past studies that show that a midtropospheric closed gyre is not sufficient for TC genesis. Sometimes, an AEW and a weak TC remain coupled for a few days, followed by the dissipation of the TC and the continued propagation of the wave. Merger of tropical and extratropical PV anomalies is also often observed and likely helps maintain some waves. The results of this study are broadly consistent with recent Lagrangian analyses of AEW evolution during TC genesis.


2008 ◽  
Vol 65 (11) ◽  
pp. 3419-3439 ◽  
Author(s):  
Chanh Q. Kieu ◽  
Da-Lin Zhang

Abstract Although tropical cyclogenesis occurs over all tropical warm ocean basins, the eastern Pacific appears to have the highest frequency of tropical cyclogenesis events per unit area. In this study, tropical cyclogenesis from merging mesoscale convective vortices (MCVs) associated with breakdowns of the intertropical convergence zone (ITCZ) is examined. This is achieved through a case study of the processes leading to the genesis of Tropical Storm Eugene (2005) over the eastern Pacific using the National Centers for Environmental Prediction reanalysis, satellite data, and 4-day multinested cloud-resolving simulations with the Weather Research and Forecast (WRF) model at the finest grid size of 1.33 km. Observational analyses reveal the initiations of two MCVs on the eastern ends of the ITCZ breakdowns that occurred more than 2 days and 1000 km apart. The WRF model reproduces their different movements, intensity and size changes, and vortex–vortex interaction at nearly the right timing and location at 39 h into the integration as well as the subsequent track and intensity of the merger in association with the poleward rollup of the ITCZ. Model results show that the two MCVs are merged in a coalescence and capture mode due to their different larger-scale steering flows and sizes. As the two MCVs are being merged, the low- to midlevel potential vorticity and tangential flows increase substantially; the latter occurs more rapidly in the lower troposphere, helping initiate the wind-induced surface heat exchange process leading to the genesis of Eugene with a diameter of 400 km. Subsequently, the merger moves poleward with characters of both MCVs. The simulated tropical storm exhibits many features that are similar to a hurricane, including the warm-cored “eye” and the rotating “eyewall.” It is also shown that vertical shear associated with a midlevel easterly jet leads to the downshear tilt and the wavenumber-1 rainfall structures during the genesis stage, and the upshear generation of moist downdrafts in the vicinity of the eyewall in the minimum equivalent potential temperature layer. Based on the above results, it is concluded that the ITCZ provides a favorable environment with dynamical instability, high humidity, and background vorticity, but it is the merger of the two MCVs that is critical for the genesis of Eugene. The storm decays as it moves northwestward into an environment with increasing vertical shear, dry intrusion, and colder sea surface temperatures. The results appear to have important implications for the high frequency of development of tropical cyclones in the eastern Pacific.


2015 ◽  
Vol 72 (12) ◽  
pp. 4469-4485 ◽  
Author(s):  
Liguang Wu ◽  
Jingjing Duan

Abstract Previous studies suggest that the low-frequency background makes an important contribution to the predictability of tropical cyclone (TC) activity on the intraseasonal time scale by providing large-scale conditions favorable for TC formation. Extended numerical experiments were conducted to demonstrate additional low-frequency influence on TC activity, which results from the development of a synoptic-scale wave train. The cyclonic circulation of the wave train provides low-level synoptic-scale disturbances for TC formation. The observed TC formation events over the western North Pacific during 14 August–10 September 2004 were first successfully simulated with the initial and lateral conditions derived from the National Centers for Environmental Prediction (NCEP) Final (FNL) Operational Global Analysis. Then the 27-day extended experiment was repeated only with the initial and lateral boundary conditions derived from the FNL low-frequency (longer than 20 days) background. It is found that the development of the synoptic-scale wave train can be well simulated with TCs forming in the cyclonic circulations of the wave train although the wavelength of the simulated wave train is substantially reduced in the absence of higher-frequency influences with periods shorter than 20 days. Sensitivity experiments indicate that the development of wave trains is sensitive to the initial monsoon trough structure. This study suggests that the synoptic-scale wave train can develop in situ and does not need upstream precursors.


2013 ◽  
Vol 70 (1) ◽  
pp. 15-35 ◽  
Author(s):  
Myung-Sook Park ◽  
Russell L. Elsberry

Abstract Unique sets of Electra Doppler Radar (ELDORA) observations in both developing and nondeveloping tropical disturbances in the western North Pacific are used to retrieve latent heating and cooling rates. During the reintensification of Sinlaku, maximum heating rates of about 80 K h−1 are diagnosed in the upper troposphere in the region of a strong updraft and maximum cooling rates of about −45 K h−1 are diagnosed in the lower troposphere in the region of a strong convective-scale downdraft. The southern convective burst in the pre-Nuri mission had a lower-tropospheric maximum in latent heating that was a more favorable condition for tropical cyclone formation than was the upper-tropospheric maximum in heating and the lower-tropospheric maximum in cooling in the northern convective burst. Two nondeveloping tropical disturbances had deeper layers of more uniform heating and of cooling rates, and some evidence of more shallow cloud tops, that distinguished them from the developing cases. Although the Shige et al. Tropical Rainfall Measuring Mission (TRMM) precipitation radar (PR) algorithm was only intended to be applied over large areas on longer time scales, the PR-derived latent heating profiles were compared with the ELDORA-derived profiles to reveal important mesoscale effects. Because all six cases indicated near-zero cooling rates, a new TRMM PR algorithm should be developed that would include the effects of saturated convective-scale downdrafts in tropical mesoscale convective systems (MCSs). Production of a legacy TRMM PR dataset with this improvement would be useful for diagnosing tropical cyclone formation dating back to 1998, and for specifying initial and validation conditions for numerical models in the tropics.


2015 ◽  
Vol 143 (10) ◽  
pp. 4126-4144 ◽  
Author(s):  
Hidetaka Hirata ◽  
Ryuichi Kawamura ◽  
Masaya Kato ◽  
Taro Shinoda

Abstract This study focused on an explosive cyclone migrating along the southern periphery of the Kuroshio/Kuroshio Extension in the middle of January 2013 and examined how those warm currents played an active role in the rapid development of the cyclone using a high-resolution coupled atmosphere–ocean regional model. The evolutions of surface fronts of the simulated cyclone resemble the Shapiro–Keyser model. At the time of the maximum deepening rate, strong mesoscale diabatic heating areas appear over the bent-back front and the warm front east of the cyclone center. Diabatic heating over the bent-back front and the eastern warm front is mainly induced by the condensation of moisture imported by the cold conveyor belt (CCB) and the warm conveyor belt (WCB), respectively. The dry air parcels transported by the CCB can receive large amounts of moisture from the warm currents, whereas the very humid air parcels transported by the WCB can hardly be modified by those currents. The well-organized nature of the CCB plays a key role not only in enhancing surface evaporation from the warm currents but also in importing the evaporated vapor into the bent-back front. The imported vapor converges at the bent-back front, leading to latent heat release. The latent heating facilitates the cyclone’s development through the production of positive potential vorticity in the lower troposphere. Its deepening can, in turn, reinforce the CCB. In the presence of a favorable synoptic-scale environment, such a positive feedback process can lead to the rapid intensification of a cyclone over warm currents.


Sign in / Sign up

Export Citation Format

Share Document