scholarly journals Seasonal-to-Interannual Variability of Ethiopia/Horn of Africa Monsoon. Part I: Associations of Wavelet-Filtered Large-Scale Atmospheric Circulation and Global Sea Surface Temperature

2009 ◽  
Vol 22 (12) ◽  
pp. 3396-3421 ◽  
Author(s):  
Zewdu T. Segele ◽  
Peter J. Lamb ◽  
Lance M. Leslie

Abstract Horn of Africa rainfall varies on multiple time scales, but the underlying climate system controls on this variability have not been examined comprehensively. This study therefore investigates the linkages between June–September Horn of Africa (especially Ethiopian) rainfall and regional atmospheric circulation and global sea surface temperature (SST) variations on several key time scales. Wavelet analysis of 5-day average or monthly total rainfall for 1970–99 identifies the dominant coherent modes of rainfall variability. Several regional atmospheric variables and global SST are then identically wavelet filtered, based on the rainfall frequency bands. Regression, correlation, and composite analyses are subsequently used to identify the most important rainfall–climate system time-scale relationships. The results show that Ethiopian monsoon rainfall variation is largely linked with annual time-scale atmospheric circulation patterns involving variability in the major components of the monsoon system. Although variability on the seasonal (75–210 days), quasi-biennial (QB; 1.42–3.04 yr), and El Niño–Southern Oscillation (ENSO; 3.04–4.60 yr) time scales accounts for much less variance than the annual mode (210 days–1.42 yr), they significantly affect Ethiopian rainfall by preferentially modulating the major regional monsoon components and remote teleconnection linkages. The seasonal time scale largely acts in phase with the annual mode, by enhancing or reducing the lower-tropospheric southwesterlies from the equatorial Atlantic during wet or dry periods. The wet QB phase strengthens the Azores and Saharan high and the tropical easterly jet (TEJ) over the Arabian Sea, while the wet ENSO phase enhances the Mascarene high, the TEJ, and the monsoon trough more locally. The effects of tropical SST on Ethiopian rainfall also are prominent on the QB and ENSO time scales. While rainfall–SST correlations for both the QB and ENSO modes are strongly positive (negative) over the equatorial western (eastern) Pacific, only ENSO exhibits widespread strong negative correlations over the Indian Ocean. Opposite QB and ENSO associations tend to characterize dry Ethiopian conditions. The relationships identified on individual time scales now are being used to develop and validate statistical prediction models for Ethiopia.

2020 ◽  
Vol 33 (22) ◽  
pp. 9551-9565
Author(s):  
Haikun Zhao ◽  
Philp J. Klotzbach ◽  
Shaohua Chen

AbstractA conventional empirical orthogonal function (EOF) analysis is performed on summertime (May–October) western North Pacific (WNP) tropical cyclone (TC) track density anomalies during 1970–2012. The first leading EOF mode is characterized by a consistent spatial distribution across the WNP basin, which is closely related to an El Niño–Southern Oscillation (ENSO)-like pattern that prevails on both interannual and interdecadal time scales. The second EOF mode is represented by a tripole pattern with consistent changes in westward and recurving tracks but with an opposite change for west-northwestward TC tracks. This second EOF pattern is dominated by consistent global sea surface temperature anomaly (SSTA) patterns on interannual and interdecadal time scales, along with a long-term increasing global temperature trend. Observed WNP TC tracks have three distinct interdecadal epochs (1970–86, 1987–97, and 1998–2012) based on EOF analyses. The interdecadal change is largely determined by the changing impact of ENSO-like and consistent global SSTA patterns. When global SSTAs are cool (warm) during 1970–86 (1998–2012), these SSTAs exert a dominant impact and generate a tripole track pattern that is similar to the positive (negative) second EOF mode. In contrast, a predominately El Niño–like SSTA pattern during 1987–97 contributed to increasing TC occurrences across most of the WNP during this 11-yr period. These findings are consistent with long-term trends in TC tracks, with a tripole track pattern observed as global SSTs increase. This study reveals the potential large-scale physical mechanisms driving the changes of WNP TC tracks in association with climate change.


2020 ◽  
Author(s):  
Tongwen Wu ◽  
Rucong Yu ◽  
Yixiong Lu ◽  
Weihua Jie ◽  
Yongjie Fang ◽  
...  

Abstract. BCC-CSM2-HR is a high-resolution version of the Beijing Climate Center (BCC) Climate System Model. Its development is on the basis of the medium-resolution version BCC-CSM2-MR which is the baseline for BCC participation to the Coupled Model Intercomparison Project Phase 6 (CMIP6). This study documents the high-resolution model, highlights major improvements in the representation of atmospheric dynamic core and physical processes. BCC-CSM2-HR is evaluated for present-day climate simulations from 1971 to 2000, which are performed under CMIP6-prescribed historical forcing, in comparison with its previous medium-resolution version BCC-CSM2-MR. We focus on basic atmospheric mean states over the globe and variabilities in the tropics including the tropic cyclones (TCs), the El Niño–Southern Oscillation (ENSO), the Madden-Julian Oscillation (MJO), and the quasi-biennial oscillation (QBO) in the stratosphere. It is shown that BCC-CSM2-HR keeps well the global energy balance and can realistically reproduce main patterns of atmosphere temperature and wind, precipitation, land surface air temperature and sea surface temperature. It also improves in the spatial patterns of sea ice and associated seasonal variations in both hemispheres. The bias of double intertropical convergence zone (ITCZ), obvious in BCC-CSM2-MR, is almost disappeared in BCC-CSM2-HR. TC activity in the tropics is increased with resolution enhanced. The cycle of ENSO, the eastward propagative feature and convection intensity of MJO, the downward propagation of QBO in BCC-CSM2-HR are all in a better agreement with observation than their counterparts in BCC-CSM2-MR. We also note some weakness in BCC-CSM2-HR, such as the excessive cloudiness in the eastern basin of the tropical Pacific with cold Sea Surface Temperature (SST) biases and the insufficient number of tropical cyclones in the North Atlantic.


Sign in / Sign up

Export Citation Format

Share Document