scholarly journals Statistical Properties of Rain Cells in the Padana Valley

2008 ◽  
Vol 25 (12) ◽  
pp. 2230-2244 ◽  
Author(s):  
Carlo Capsoni ◽  
Michele D’Amico ◽  
Paolo Locatelli

Abstract A large collection of radar reflectivity maps gathered from 1988 to 1992 at the Spino d’Adda experimental station, located in the Padana Valley, has been exploited to investigate the statistical properties of rain structures and their descriptors. The results of this analysis can be of interest for meteorological, hydrological, and telecommunication applications. The authors found that the isosuperficial diameter follows an exponential distribution; when the threshold of rain intensity is increased, disappearance is dominant over fragmentation; moreover, the number of “mother cells” that generate N “daughter cells” decreases exponentially with N. To give a complete but concise characterization of the geometrical, physical, and morphological properties of rain cells, a set of analytical descriptors has been introduced and statistically defined through their probability density functions and the centrality, dispersion, and excursion parameters. As a final point, comparative statistical analyses have been performed at different thresholds for every couple of descriptors introduced, which allowed the authors to highlight correlations between them.

Author(s):  
Hai-Nan Lin ◽  
Yu Sang

Abstract The statistical properties of the repeating fast radio burst FRB 121102 are investigated. We find that the cumulative distributions of fluence, flux density, total energy and waiting time can be well fitted by the bent power law. In addition, the probability density functions of fluctuations of fluence, flux density and total energy well follow the Tsallis q-Gaussian distribution. The q values keep steady around q ∼ 2 for different scale intervals, indicating a scale-invariant structure of the bursts. The statistical properties of FRB 121102 are very similar to that of the soft gamma repeater SGR J1550-5418. The underlying physical implications need to be further investigated.


1992 ◽  
Vol 3 (7) ◽  
pp. 789-803 ◽  
Author(s):  
D Preuss ◽  
J Mulholland ◽  
A Franzusoff ◽  
N Segev ◽  
D Botstein

The membrane compartments responsible for Golgi functions in wild-type Saccharomyces cerevisiae were identified and characterized by immunoelectron microscopy. Using improved fixation methods, Golgi compartments were identified by labeling with antibodies specific for alpha 1-6 mannose linkages, the Sec7 protein, or the Ypt1 protein. The compartments labeled by each of these antibodies appear as disk-like structures that are apparently surrounded by small vesicles. Yeast Golgi typically are seen as single, isolated cisternae, generally not arranged into parallel stacks. The location of the Golgi structures was monitored by immunoelectron microscopy through the yeast cell cycle. Several Golgi compartments, apparently randomly distributed, were always observed in mother cells. During the initiation of new daughter cells, additional Golgi structures cluster just below the site of bud emergence. These Golgi enter daughter cells at an early stage, raising the possibility that much of the bud's growth might be due to secretory vesicles formed as well as consumed entirely within the daughter. During cytokinesis, the Golgi compartments are concentrated near the site of cell wall synthesis. Clustering of Golgi both at the site of bud formation and at the cell septum suggests that these organelles might be directed toward sites of rapid cell surface growth.


2007 ◽  
Vol 64 (6) ◽  
pp. 2012-2028 ◽  
Author(s):  
A. R. Jameson

Most variables in meteorology are statistically heterogeneous. The statistics of data from several different locations, then, can be thought of as an amalgamation of information contained in several contributing probability density functions (PDFs) having different sets of parameters, different parametric forms, and different mean values. The frequency distribution of such data, then, will often be multimodal. Usually, however, in order to achieve better sampling, measurements of these variables over an entire set of data gathered at widely disparate locations are processed as though the data were statistically homogeneous, that is, as though they were fully characterized by just one PDF and one single set of parameters having one mean value. Is there, instead, a better way of treating the data in a manner that is consistent with this statistical heterogeneity? This question is addressed here using a statistical inversion technique developed by Tarantola based upon Bayesian methodology. Two examples of disdrometer measurements in real rain, one 16 h and the other 3 min long, reveal the presence of multiple mean values of the counts at all the different drop sizes. In both cases the heterogeneous rain can be decomposed into five–seven statistically homogeneous components, each characterized by its own steady drop size distribution. Concepts such as stratiform versus convective rain can be given more precise meaning in terms of the contributions each component makes to the rain. Furthermore, this discovery permits the explicit inclusion of statistical heterogeneity into some analytic theories.


Author(s):  
John P. Robinson ◽  
J. David Puett

Much work has been reported on the chemical, physical and morphological properties of urinary Tamm-Horsfall glycoprotein (THG). Although it was once reported that cystic fibrotic (CF) individuals had a defective THG, more recent data indicate that THG and CF-THG are similar if not identical.No studies on the conformational aspects have been reported on this glycoprotein using circular dichroism (CD). We examined the secondary structure of THG and derivatives under various conditions and have correlated these results with quaternary structure using electron microscopy.THG was prepared from normal adult males and CF-THG from a 16-year old CF female by the method of Tamm and Horsfall. CF female by the method of Tamm and Horsfall.


2021 ◽  
Vol 13 (12) ◽  
pp. 2307
Author(s):  
J. Javier Gorgoso-Varela ◽  
Rafael Alonso Ponce ◽  
Francisco Rodríguez-Puerta

The diameter distributions of trees in 50 temporary sample plots (TSPs) established in Pinus halepensis Mill. stands were recovered from LiDAR metrics by using six probability density functions (PDFs): the Weibull (2P and 3P), Johnson’s SB, beta, generalized beta and gamma-2P functions. The parameters were recovered from the first and the second moments of the distributions (mean and variance, respectively) by using parameter recovery models (PRM). Linear models were used to predict both moments from LiDAR data. In recovering the functions, the location parameters of the distributions were predetermined as the minimum diameter inventoried, and scale parameters were established as the maximum diameters predicted from LiDAR metrics. The Kolmogorov–Smirnov (KS) statistic (Dn), number of acceptances by the KS test, the Cramér von Misses (W2) statistic, bias and mean square error (MSE) were used to evaluate the goodness of fits. The fits for the six recovered functions were compared with the fits to all measured data from 58 TSPs (LiDAR metrics could only be extracted from 50 of the plots). In the fitting phase, the location parameters were fixed at a suitable value determined according to the forestry literature (0.75·dmin). The linear models used to recover the two moments of the distributions and the maximum diameters determined from LiDAR data were accurate, with R2 values of 0.750, 0.724 and 0.873 for dg, dmed and dmax. Reasonable results were obtained with all six recovered functions. The goodness-of-fit statistics indicated that the beta function was the most accurate, followed by the generalized beta function. The Weibull-3P function provided the poorest fits and the Weibull-2P and Johnson’s SB also yielded poor fits to the data.


2021 ◽  
Vol 502 (2) ◽  
pp. 1768-1784
Author(s):  
Yue Hu ◽  
A Lazarian

ABSTRACT The velocity gradients technique (VGT) and the probability density functions (PDFs) of mass density are tools to study turbulence, magnetic fields, and self-gravity in molecular clouds. However, self-absorption can significantly make the observed intensity different from the column density structures. In this work, we study the effects of self-absorption on the VGT and the intensity PDFs utilizing three synthetic emission lines of CO isotopologues 12CO (1–0), 13CO (1–0), and C18O (1–0). We confirm that the performance of VGT is insensitive to the radiative transfer effect. We numerically show the possibility of constructing 3D magnetic fields tomography through VGT. We find that the intensity PDFs change their shape from the pure lognormal to a distribution that exhibits a power-law tail depending on the optical depth for supersonic turbulence. We conclude the change of CO isotopologues’ intensity PDFs can be independent of self-gravity, which makes the intensity PDFs less reliable in identifying gravitational collapsing regions. We compute the intensity PDFs for a star-forming region NGC 1333 and find the change of intensity PDFs in observation agrees with our numerical results. The synergy of VGT and the column density PDFs confirms that the self-gravitating gas occupies a large volume in NGC 1333.


Sign in / Sign up

Export Citation Format

Share Document