scholarly journals The Benefits of Multianalysis and Poor Man’s Ensembles

2008 ◽  
Vol 136 (11) ◽  
pp. 4113-4129 ◽  
Author(s):  
Neill E. Bowler ◽  
Alberto Arribas ◽  
Kenneth R. Mylne

Abstract A new approach to probabilistic forecasting is proposed, based on the generation of an ensemble of equally likely analyses of the current state of the atmosphere. The rationale behind this approach is to mimic a poor man’s ensemble, which combines the deterministic forecasts from national meteorological services around the world. The multianalysis ensemble aims to generate a series of forecasts that are both as skillful as each other and the control forecast. This produces an ensemble mean forecast that is superior not only to the ensemble members, but to the control forecast in the short range even for slowly varying parameters, such as 500-hPa height. This is something that it is not possible with traditional ensemble methods, which perturb a central analysis. The results herein show that the multianalysis ensemble is more skillful than the Met Office’s high-resolution forecast by 4.5% over the first 3 days (on average as measured for RMSE). Similar results are found for different verification scores and various regions of the globe. In contrast, the ensemble mean for the ensemble currently run by the Met Office performs 1.5% worse than the high-resolution forecast (similar results are found for the ECMWF ensemble). It is argued that the multianalysis approach is therefore superior to current ensemble methods. The multianalysis results were achieved with a two-member ensemble: the forecast from a high-resolution model plus a low-resolution perturbed model. It may be possible to achieve greater improvements with a larger ensemble.

2011 ◽  
Vol 4 (2) ◽  
pp. 843-868 ◽  
Author(s):  
D. F. Tang ◽  
S. Dobbie

Abstract. Complex physical systems can often be simulated using very high-resolution models but this is not always practical because of computational restrictions. In this case the model must be simplified or parameterised, but this is a notoriously difficult process that often requires the introduction of "model assumptions" that are hard or impossible to justify. Here we introduce a new approach to parameterising models. The approach makes use of a newly developed computer program, which we call iGen, that analyses the source code of a high-resolution model and formally derives a much faster parameterised model that closely approximates the original, reporting bounds on the error introduced by any approximations. These error bounds can be used to formally justify use of the parameterised model in subsequent numerical experiments. Using increasingly complex physical systems as examples we illustrate that iGen has the ability to produce parameterisations that run typically orders of magnitude faster than the underlying, high-resolution models from which they are derived and show that iGen has the potential to become an important tool in model development.


2011 ◽  
Vol 4 (3) ◽  
pp. 785-795 ◽  
Author(s):  
D. F. Tang ◽  
S. Dobbie

Abstract. Complex physical systems can often be simulated using very high resolution models but this is not always practical because of computational restrictions. In this case the model must be simplified or parameterised in order to make it computationally tractable. A parameterised model is created using an ad-hoc selection of techniques which range from the formal to the purely intuitive, and as a result it is very difficult to objectively quantify the fidelity of the model to the physical system. It is rare that a parameterised model can be formally shown to simulate a physical system to within some bounded error. Here we introduce a new approach to parameterising models which allows error to be formally bounded. The approach makes use of a newly developed computer program, which we call iGen, that analyses the source code of a high-resolution model and formally derives a much faster, parameterised model that closely approximates the original, reporting bounds on the error introduced by any approximations. These error bounds can be used to formally justify conclusions about a physical system based on observations of the model's behaviour. Using increasingly complex physical systems as examples we illustrate that iGen has the ability to produce parameterisations that run typically orders of magnitude faster than the underlying, high-resolution models from which they are derived.


2013 ◽  
Vol 140 (681) ◽  
pp. 1189-1197 ◽  
Author(s):  
J. A. Waller ◽  
S. L. Dance ◽  
A. S. Lawless ◽  
N. K. Nichols ◽  
J. R. Eyre

2002 ◽  
Vol 5 (3) ◽  
pp. 212-212 ◽  
Author(s):  
U. Tiede ◽  
A. Pommert ◽  
B. Pflesser ◽  
E. Richter ◽  
M. Riemer ◽  
...  

2014 ◽  
Vol 74 ◽  
pp. 36-52 ◽  
Author(s):  
Rachid Benshila ◽  
Fabien Durand ◽  
Sébastien Masson ◽  
Romain Bourdallé-Badie ◽  
Clement de Boyer Montégut ◽  
...  

2021 ◽  
Vol 2 (8) ◽  
pp. 4-12
Author(s):  
А. А. DADASHOV ◽  

The article analyzes the current situation with the access of farms to credit resources in the country and the world, a new approach to facilitating farmers ' access to credit resources is proposed. Surveys within the framework of the farm data monitoring system on the information base of the Center for Agrarian Research under the Ministry of Agriculture of the Republic of Azerbaijan revealed the current state of access of agricul-tural producers to financial and credit resources. The new approach addresses issues related to the imple-mentation of intermediary and guarantee functions by research institutes of the agricultural sector. The posi-tive influence of the latter on creditworthiness is shown due to the mediation between the bank and the farmer.


Sign in / Sign up

Export Citation Format

Share Document