scholarly journals Evaluation of the Town Energy Balance Model in Cold and Snowy Conditions during the Montreal Urban Snow Experiment 2005

2010 ◽  
Vol 49 (3) ◽  
pp. 346-362 ◽  
Author(s):  
A. Lemonsu ◽  
S. Bélair ◽  
J. Mailhot ◽  
S. Leroyer

Abstract Using the Montreal Urban Snow Experiment (MUSE) 2005 database, surface radiation and energy exchanges are simulated in offline mode with the Town Energy Balance (TEB) and the Interactions between Soil, Biosphere, and Atmosphere (ISBA) parameterizations over a heavily populated residential area of Montreal, Quebec, Canada, during the winter–spring transition period (from March to April 2005). The comparison of simulations with flux measurements indicates that the system performs well when roads and alleys are snow covered. In contrast, the storage heat flux is largely underestimated in favor of the sensible heat flux at the end of the period when snow is melted. An evaluation and an improvement of TEB’s snow parameterization have also been conducted by using snow property measurements taken during intensive observational periods. Snow density, depth, and albedo are correctly simulated by TEB for alleys where snow cover is relatively homogeneous. Results are not as good for the evolution of snow on roads, which is more challenging because of spatial and temporal variability related to human activity. An analysis of the residual term of the energy budget—including contributions of snowmelt, heat storage, and anthropogenic heat—is performed by using modeling results and observations. It is found that snowmelt and anthropogenic heat fluxes are reasonably well represented by TEB–ISBA, whereas storage heat flux is underestimated.

2019 ◽  
Vol 23 (12) ◽  
pp. 5033-5058
Author(s):  
Guillaume Bigeard ◽  
Benoit Coudert ◽  
Jonas Chirouze ◽  
Salah Er-Raki ◽  
Gilles Boulet ◽  
...  

Abstract. The heterogeneity of Agroecosystems, in terms of hydric conditions, crop types and states, and meteorological forcing, is difficult to characterize precisely at the field scale over an agricultural landscape. This study aims to perform a sensitivity study with respect to the uncertain model inputs of two classical approaches used to map the evapotranspiration of agroecosystems: (1) a surface energy balance (SEB) model, the Two-Source Energy Balance (TSEB) model, forced with thermal infrared (TIR) data as a proxy for the crop hydric conditions, and (2) a soil–vegetation–atmosphere transfer (SVAT) model, the SEtHyS model, where hydric conditions are computed from a soil water budget. To this end, the models' skill was compared using a large and unique in situ database covering different crops and climate conditions, which was acquired over three experimental sites in southern France and Morocco. On average, the models provide 30 min estimations of latent heat flux (LE) with a RMSE of around 55 W m−2 for TSEB and 47 W m−2 for SEtHyS, and estimations of sensible heat flux (H) with a RMSE of around 29 W m−2 for TSEB and 38 W m−2 for SEtHyS. A sensitivity analysis based on realistic errors aimed to estimate the potential decrease in performance induced by the spatialization process. For the SVAT model, the multi-objective calibration iterative procedure (MCIP) is used to determine and test different sets of parameters. TSEB is run with only one set of parameters and provides acceptable performance for all crop stages apart from the early growing season (LAI < 0.2 m2 m−2) and when hydric stress occurs. An in-depth study on the Priestley–Taylor key parameter highlights its marked diurnal cycle and the need to adjust its value to improve flux partitioning between the sensible and latent heat fluxes (1.5 and 1.25 for France and Morocco, respectively). Optimal values of 1.8–2 were highlighted under cloudy conditions, which is of particular interest due to the emergence of low-altitude drone acquisition. Under developed vegetation (LAI > 0.8 m2 m−2) and unstressed conditions, using sets of parameters that only differentiate crop types is a valuable trade-off for SEtHyS. This study provides some scientific elements regarding the joint use of both approaches and TIR imagery, via the development of new data assimilation and calibration strategies.


2017 ◽  
Vol 21 (2) ◽  
pp. 685-706 ◽  
Author(s):  
Stanislaus J. Schymanski ◽  
Dani Or

Abstract. The Penman–Monteith (PM) equation is commonly considered the most advanced physically based approach to computing transpiration rates from plants considering stomatal conductance and atmospheric drivers. It has been widely evaluated at the canopy scale, where aerodynamic and canopy resistance to water vapour are difficult to estimate directly, leading to various empirical corrections when scaling from leaf to canopy. Here, we evaluated the PM equation directly at the leaf scale, using a detailed leaf energy balance model and direct measurements in a controlled, insulated wind tunnel using artificial leaves with fixed and predefined stomatal conductance. Experimental results were consistent with a detailed leaf energy balance model; however, the results revealed systematic deviations from PM-predicted fluxes, which pointed to fundamental problems with the PM equation. Detailed analysis of the derivation by Monteith(1965) and subsequent amendments revealed two errors: one in neglecting two-sided exchange of sensible heat by a planar leaf, and the other related to the representation of hypostomatous leaves, which are very common in temperate climates. The omission of two-sided sensible heat flux led to bias in simulated latent heat flux by the PM equation, which was as high as 50 % of the observed flux in some experiments. Furthermore, we found that the neglect of feedbacks between leaf temperature and radiative energy exchange can lead to additional bias in both latent and sensible heat fluxes. A corrected set of analytical solutions for leaf temperature as well as latent and sensible heat flux is presented, and comparison with the original PM equation indicates a major improvement in reproducing experimental results at the leaf scale. The errors in the original PM equation and its failure to reproduce experimental results at the leaf scale (for which it was originally derived) propagate into inaccurate sensitivities of transpiration and sensible heat fluxes to changes in atmospheric conditions, such as those associated with climate change (even with reasonable present-day performance after calibration). The new formulation presented here rectifies some of the shortcomings of the PM equation and could provide a more robust starting point for canopy representation and climate change studies.


2008 ◽  
Vol 47 (1) ◽  
pp. 59-75 ◽  
Author(s):  
A. Lemonsu ◽  
S. Bélair ◽  
J. Mailhot ◽  
M. Benjamin ◽  
G. Morneau ◽  
...  

Abstract Within the framework of a large urban meteorology program recently launched in Canada, the Montreal Urban Snow Experiment (MUSE) campaign has been conducted in order to document the thermoradiative exchanges in a densely built-up area of Montreal in late winter and spring conditions. The targeted period is of particular scientific interest because it covers the transition period from a mainly snow-covered urban environment to a mainly snow-free environment. The campaign is based on four weeks of observations from 17 March to 14 April 2005. It couples automatic and continuous measurements of radiation and turbulent fluxes, radiative surface temperatures, and air temperature and humidity with manual observations performed during intensive observation periods to supplement the surface temperature observations and to characterize the snow properties. The footprints of radiation and turbulent flux measurements are computed using the surface–sensor–sun urban model and the flux-source area model, respectively. The analysis of the radiometer footprint underscores the difficulty of correctly locating this type of instrument in urban environments, so that the sensor sees a representative combination of the urban and nonurban surfaces. Here, the alley contribution to the upward radiation tends to be overestimated to the detriment of the road contribution. The turbulent footprints cover homogeneous zones in terms of surface characteristics, whatever the wind direction. The initial analysis of the energy balance displays the predominance of the residual term (QRes = Q* − QH − QE) in comparison with the turbulent sensible (QH) and latent (QE) heat fluxes, since its daytime contribution exceeds 50% of the net radiation (Q*). The investigation of energy balances observed at the beginning and at the end of the experiment (i.e., with and without snow) also indicates that the snow plays a significant role in the flux partitioning and the daily pattern of fluxes. Without snow, the energy balance is characteristic of energy balances that have been already observed in densely built-up areas, notably because of the hysteresis observed for QRes and QH in relation to Q* and because of the high contribution of QRes, which includes the effect of heat storage inside the urban structures. With snow, the flux partitioning is modified by the snowmelt process leading to contributions of the residual term and latent heat flux, which are larger than in the case without snow to the detriment of the sensible heat flux.


1990 ◽  
Vol 36 (123) ◽  
pp. 217-221 ◽  
Author(s):  
Roger J. Braithwaite ◽  
Ole B. Olesen

AbstractDaily ice ablation on two outlet glaciers from the Greenland ice sheet, Nordbogletscher (1979–83) and Qamanârssûp sermia (1980–86), is related to air temperature by a linear regression equation. Analysis of this ablation-temperature equation with the help of a simple energy-balance model shows that sensible-heat flux has the greatest temperature response and accounts for about one-half of the temperature response of ablation. Net radiation accounts for about one-quarter of the temperature response of ablation, and latent-heat flux and errors account for the remainder. The temperature response of sensible-heat flux at QQamanârssûp sermia is greater than at Nordbogletscher mainly due to higher average wind speeds. The association of high winds with high temperatures during Föhn events further increases sensible-heat flux. The energy-balance model shows that ablation from a snow surface is only about half that from an ice surface at the same air temperature.


2020 ◽  
Vol 142 (1-2) ◽  
pp. 701-728
Author(s):  
Denise Hertwig ◽  
Sue Grimmond ◽  
Margaret A. Hendry ◽  
Beth Saunders ◽  
Zhengda Wang ◽  
...  

Abstract Two urban schemes within the Joint UK Land Environment Simulator (JULES) are evaluated offline against multi-year flux observations in the densely built-up city centre of London and in suburban Swindon (UK): (i) the 1-tile slab model, used in climate simulations; (ii) the 2-tile canopy model MORUSES (Met Office–Reading Urban Surface Exchange Scheme), used for numerical weather prediction over the UK. Offline, both models perform better at the suburban site, where differences between the urban schemes are less pronounced due to larger vegetation fractions. At both sites, the outgoing short- and longwave radiation is more accurately represented than the turbulent heat fluxes. The seasonal variations of model skill are large in London, where the sensible heat flux in autumn and winter is strongly under-predicted if the large city centre magnitudes of anthropogenic heat emissions are not represented. The delayed timing of the sensible heat flux in the 1-tile model in London results in large negative bias in the morning. The partitioning of the urban surface into canyon and roof in MORUSES improves this as the roof tile is modelled with a very low thermal inertia, but phase and amplitude of the grid box-averaged flux critically depend on accurate knowledge of the plan-area fractions of streets and buildings. Not representing non-urban land cover (e.g. vegetation, inland water) in London results in severely under-predicted latent heat fluxes. Control runs demonstrate that the skill of both models can be greatly improved by providing accurate land cover and morphology information and using representative anthropogenic heat emissions, which is essential if the model output is intended to inform integrated urban services.


1990 ◽  
Vol 36 (123) ◽  
pp. 217-221 ◽  
Author(s):  
Roger J. Braithwaite ◽  
Ole B. Olesen

AbstractDaily ice ablation on two outlet glaciers from the Greenland ice sheet, Nordbogletscher (1979–83) and Qamanârssûp sermia (1980–86), is related to air temperature by a linear regression equation. Analysis of this ablation-temperature equation with the help of a simple energy-balance model shows that sensible-heat flux has the greatest temperature response and accounts for about one-half of the temperature response of ablation. Net radiation accounts for about one-quarter of the temperature response of ablation, and latent-heat flux and errors account for the remainder. The temperature response of sensible-heat flux at QQamanârssûp sermia is greater than at Nordbogletscher mainly due to higher average wind speeds. The association of high winds with high temperatures during Föhn events further increases sensible-heat flux. The energy-balance model shows that ablation from a snow surface is only about half that from an ice surface at the same air temperature.


2014 ◽  
Vol 15 (1) ◽  
pp. 143-158 ◽  
Author(s):  
Cezar Kongoli ◽  
William P. Kustas ◽  
Martha C. Anderson ◽  
John M. Norman ◽  
Joseph G. Alfieri ◽  
...  

Abstract The utility of a snow–vegetation energy balance model for estimating surface energy fluxes is evaluated with field measurements at two sites in a rangeland ecosystem in southwestern Idaho during the winter of 2007: one site dominated by aspen vegetation and the other by sagebrush. Model parameterizations are adopted from the two-source energy balance (TSEB) modeling scheme, which estimates fluxes from the vegetation and surface substrate separately using remotely sensed measurements of land surface temperature. Modifications include development of routines to account for surface snowmelt energy flux and snow masking of vegetation. Comparisons between modeled and measured surface energy fluxes of net radiation and turbulent heat showed reasonable agreement when considering measurement uncertainties in snow environments and the simplified algorithm used for the snow surface heat flux, particularly on a daily basis. There was generally better performance over the aspen field site, likely due to more reliable input data of snow depth/snow cover. The model was robust in capturing the evolution of surface energy fluxes during melt periods. The model behavior was also consistent with previous studies that indicate the occurrence of upward sensible heat fluxes during daytime owing to solar heating of vegetation limbs and branches, which often exceeds the downward sensible heat flux driving the snowmelt. However, model simulations over aspen trees showed that the upward sensible heat flux could be reversed for a lower canopy fraction owing to the dominance of downward sensible heat flux over snow. This indicates that reliable vegetation or snow cover fraction inputs to the model are needed for estimating fluxes over snow-covered landscapes.


2020 ◽  
Vol 42 ◽  
pp. e39
Author(s):  
Rubmara Ketzer Oliveira ◽  
Luciano Sobral Fraga Junior ◽  
Larissa Brêtas Moura ◽  
Debora Regina Roberti ◽  
Felipe Gustavo Pilau

Brazil is the main sugarcane producer in the world, which is intended for various purposes, from food to power generation. Soybean cultivation in areas of sugarcane under renewal has been growing progressively in Brazil. Quantifying energy fluxes at different stages of this process is essential for better management. The work was carried out in Piracicaba city, with the objective of analyzing the behavior of energy fluxes and the closing of the energy balance in a sugarcane renewal area with a fallow period followed by soybean cultivation. The latent and sensitive heat fluxes were obtained with the “Eddy covariance” method. The closing of the energy balance in the fallow period with straw-covered uncovered and soybean-cultivated soil presented a correlation coefficient of 0.88, 0.78 and 0.71, respectively. In the period without cultivation, the sensible heat flux was predominant in relation to the latent heat flux, varying according to the rainfall regime. The presence of straw under the soil in the fallow period affected the latent heat flux. With soybean cultivation, the latent heat flux surpassed the sensible heat flux.


2021 ◽  
Author(s):  
Yiqing Liu ◽  
Zhiwen Luo ◽  
Sue Grimmond

Abstract. Buildings are a major source of anthropogenic heat emissions, impacting energy use and human health in cities. The difference between building energy consumption and building anthropogenic heat emission magnitudes and time lag and are poorly quantified. Energy consumption (QEC) is a widely used proxy for the anthropogenic heat flux from buildings (QF,B). Here we revisit the latter’s definition. If QF,B is the heat emission to the outdoor environment from human activities within buildings, we can derive it from the changes in energy balance fluxes between occupied and unoccupied buildings. Our derivation shows the difference between QEC and QF,B is attributable to a change in the storage heat flux induced by human activities (∆So-uo) (i.e., QF,B = QEC − ∆So-uo). Using building energy simulations (EnergyPlus) we calculate the energy balance fluxes for a simplified isolated building (obtaining QF,B, QEC, ∆So-uo) with different occupancy states. The non-negligible differences in diurnal patterns between QF,B and QEC caused by thermal storage (e.g. hourly QF,B to QEC ratios vary between −2.72 and 5.13 within a year in Beijing, China). Negative QF,B can occur as human activities can reduce heat emission from building but are associated with a large storage heat flux. Building operations (e.g., open windows, use of HVAC system) modify the QF,B by affecting not only QEC but also the ∆So-uo diurnal profile. Air temperature and solar radiation are critical meteorological factors explaining day-to-day variability of QF,B. Our new approach could be used to provide data for future parameterisations of both anthropogenic heat flux and storage heat fluxes from buildings. It is evident that storage heat fluxes in cities may also be impacted by occupant behaviour.


2020 ◽  
Author(s):  
Gert-Jan Steeneveld ◽  
Sophie van der Horst ◽  
Bert Heusinkveld

&lt;p&gt;Cities largely affect boundary-layer climates due to complex surface structures, pollutant emissions, and anthropogenic heat release. As urban populations are expanding worldwide, insight is required into the urban surface radiation and energy balance and urban greenhouse gas fluxes. However, little long-term flux measurement records are available for dense city centres. We present one year (June 2018 - May 2019) of flux observations taken at a 40-meters tower in the city centre of Amsterdam. We analyse the diurnal and seasonal variation of the turbulent and greenhouse gas fluxes, and we estimate the flux footprint to gain insight in flux variation with wind direction. Also, anthropogenic heat flux and storage fluxes are estimated from emission inventories and the objective hysteresis model respectively. This analysis shows that, especially during the winter, the sum of the sensible and latent heat flux exceeds the net radiation. Thus, the storage flux and anthropogenic heat flux are significant energy providers. Also, we find a surprisingly good surface energy balance closure, especially during summer. To achieve annual energy closure, the sensible heat and latent heat flux require an increase of 13%. Moreover, we find that the measured carbon dioxide flux (45 kg CO&lt;sub&gt;2&lt;/sub&gt; m&lt;sup&gt;-2&lt;/sup&gt; y&lt;sup&gt;-1&lt;/sup&gt;) is close to bottom-up source quantification (47 kg CO&lt;sub&gt;2&lt;/sub&gt; m&lt;sup&gt;-2&lt;/sup&gt; y&lt;sup&gt;-1&lt;/sup&gt;). For some wind directions, the agreement is better than for others. In addition, we show that the annual methane emission is slightly higher than the emission found in Florence and London. Yet the methane source partitioning in Amsterdam remains open for more research.&lt;/p&gt;


Sign in / Sign up

Export Citation Format

Share Document