scholarly journals Urban signals in high-resolution weather and climate simulations: role of urban land-surface characterisation

2020 ◽  
Vol 142 (1-2) ◽  
pp. 701-728
Author(s):  
Denise Hertwig ◽  
Sue Grimmond ◽  
Margaret A. Hendry ◽  
Beth Saunders ◽  
Zhengda Wang ◽  
...  

Abstract Two urban schemes within the Joint UK Land Environment Simulator (JULES) are evaluated offline against multi-year flux observations in the densely built-up city centre of London and in suburban Swindon (UK): (i) the 1-tile slab model, used in climate simulations; (ii) the 2-tile canopy model MORUSES (Met Office–Reading Urban Surface Exchange Scheme), used for numerical weather prediction over the UK. Offline, both models perform better at the suburban site, where differences between the urban schemes are less pronounced due to larger vegetation fractions. At both sites, the outgoing short- and longwave radiation is more accurately represented than the turbulent heat fluxes. The seasonal variations of model skill are large in London, where the sensible heat flux in autumn and winter is strongly under-predicted if the large city centre magnitudes of anthropogenic heat emissions are not represented. The delayed timing of the sensible heat flux in the 1-tile model in London results in large negative bias in the morning. The partitioning of the urban surface into canyon and roof in MORUSES improves this as the roof tile is modelled with a very low thermal inertia, but phase and amplitude of the grid box-averaged flux critically depend on accurate knowledge of the plan-area fractions of streets and buildings. Not representing non-urban land cover (e.g. vegetation, inland water) in London results in severely under-predicted latent heat fluxes. Control runs demonstrate that the skill of both models can be greatly improved by providing accurate land cover and morphology information and using representative anthropogenic heat emissions, which is essential if the model output is intended to inform integrated urban services.

2012 ◽  
Vol 12 (17) ◽  
pp. 7881-7892 ◽  
Author(s):  
H. Z. Liu ◽  
J. W. Feng ◽  
L. Järvi ◽  
T. Vesala

Abstract. Long-term measurements of carbon dioxide flux (Fc) and the latent and sensible heat fluxes were performed using the eddy covariance (EC) method in Beijing, China over a 4-yr period in 2006–2009. The EC setup was installed at a height of 47 m on the Beijing 325-m meteorological tower in the northwest part of the city. Latent heat flux dominated the energy exchange between the urban surface and the atmosphere in summer, while sensible heat flux was the main component in the spring. Winter and autumn were two transition periods of the turbulent fluxes. The source area of Fc was highly heterogeneous, which consisted of buildings, parks, and highways. It was of interest to study of the temporal and spatial variability of Fc in this urban environment of a developing country. Both on diurnal and monthly scale, the urban surface acted as a net source for CO2 and downward fluxes were only occasionally observed. The diurnal pattern of Fc showed dependence on traffic and the typical two peak traffic patterns appeared in the diurnal cycle. Also Fc was higher on weekdays than on weekends due to the higher traffic volumes on weekdays. On seasonal scale, Fc was generally higher in winter than during other seasons likely due to domestic heating during colder months. Total annual average CO2 emissions from the neighborhood of the tower were estimated to be 4.90 kg C m−2 yr−1 over the 4-yr period. Total vehicle population was the most important factor controlling the inter-annual variability of Fc in this urban area.


2020 ◽  
Vol 66 (258) ◽  
pp. 543-555 ◽  
Author(s):  
Lindsey Nicholson ◽  
Ivana Stiperski

AbstractWe present the first direct comparison of turbulence conditions measured simultaneously over exposed ice and a 0.08 m thick supraglacial debris cover on Suldenferner, a small glacier in the Italian Alps. Surface roughness, sensible heat fluxes (~20–50 W m−2), latent heat fluxes (~2–10 W m−2), topology and scale of turbulence are similar over both glacier surface types during katabatic and synoptically disturbed conditions. Exceptions are sunny days when buoyant convection becomes significant over debris-covered ice (sensible heat flux ~ −100 W m−2; latent heat flux ~ −30 W m−2) and prevailing katabatic conditions are rapidly broken down even over this thin debris cover. The similarity in turbulent properties implies that both surface types can be treated the same in terms of boundary layer similarity theory. The differences in turbulence between the two surface types on this glacier are dominated by the radiative and thermal contrasts, thus during sunny days debris cover alters both the local surface turbulent energy fluxes and the glacier component of valley circulation. These variations under different flow conditions should be accounted for when distributing temperature fields for modeling applications over partially debris-covered glaciers.


2010 ◽  
Vol 49 (3) ◽  
pp. 346-362 ◽  
Author(s):  
A. Lemonsu ◽  
S. Bélair ◽  
J. Mailhot ◽  
S. Leroyer

Abstract Using the Montreal Urban Snow Experiment (MUSE) 2005 database, surface radiation and energy exchanges are simulated in offline mode with the Town Energy Balance (TEB) and the Interactions between Soil, Biosphere, and Atmosphere (ISBA) parameterizations over a heavily populated residential area of Montreal, Quebec, Canada, during the winter–spring transition period (from March to April 2005). The comparison of simulations with flux measurements indicates that the system performs well when roads and alleys are snow covered. In contrast, the storage heat flux is largely underestimated in favor of the sensible heat flux at the end of the period when snow is melted. An evaluation and an improvement of TEB’s snow parameterization have also been conducted by using snow property measurements taken during intensive observational periods. Snow density, depth, and albedo are correctly simulated by TEB for alleys where snow cover is relatively homogeneous. Results are not as good for the evolution of snow on roads, which is more challenging because of spatial and temporal variability related to human activity. An analysis of the residual term of the energy budget—including contributions of snowmelt, heat storage, and anthropogenic heat—is performed by using modeling results and observations. It is found that snowmelt and anthropogenic heat fluxes are reasonably well represented by TEB–ISBA, whereas storage heat flux is underestimated.


2020 ◽  
Author(s):  
Yaoming Ma

<p>The exchange of heat and water vapor between land surface and atmosphere over the Third Pole region (Tibetan Plateau and nearby surrounding region) plays an important role in Asian monsoon, westerlies and the northern hemisphere weather and climate systems. Supported by various agencies in the People’s Republic of China, a Third Pole Environment (TPE) observation and research Platform (TPEORP) is now implementing over the Third Pole region. The background of the establishment of the TPEORP, the establishing and monitoring plan of long-term scale (5-10 years) of it will be shown firstly. Then the preliminary observational analysis results, such as the characteristics of land surface energy fluxes partitioning and the turbulent characteristics will also been shown in this study. Then, the parameterization methodology based on satellite data and the atmospheric boundary layer (ABL) observations has been proposed and tested for deriving regional distribution of net radiation flux, soil heat flux, sensible heat flux and latent heat flux (evapotranspiration (ET)) and their variation trends over the heterogeneous landscape of the Tibetan Plateau (TP) area. To validate the proposed methodology, the ground measured net radiation flux, soil heat flux, sensible heat flux and latent heat flux of the TPEORP are compared to the derived values. The results showed that the derived land surface heat fluxes over the study areas are in good accordance with the land surface status. These parameters show a wide range due to the strong contrast of surface feature. And the estimated land surface heat fluxes are in good agreement with ground measurements, and all the absolute percent difference in less than 10% in the validation sites. The sensible heat flux has increased slightly and the latent heat flux has decreased from 2001 to 2016 over the TP. It is therefore conclude that the proposed methodology is successful for the retrieval of land surface heat fluxes and ET over heterogeneous landscape of the TP area. Further improvement of the methodology and its applying field over the whole Third Pole region and Pan-Third Pole region were also discussed.</p>


2017 ◽  
Vol 34 (9) ◽  
pp. 2103-2112 ◽  
Author(s):  
Temple R. Lee ◽  
Michael Buban ◽  
Edward Dumas ◽  
C. Bruce Baker

AbstractUpscaling point measurements from micrometeorological towers is a challenging task that is important for a variety of applications, for example, in process studies of convection initiation, carbon and energy budget studies, and the improvement of model parameterizations. In the present study, a technique was developed to determine the horizontal variability in sensible heat flux H surrounding micrometeorological towers. The technique was evaluated using 15-min flux observations, as well as measurements of land surface temperature and air temperature obtained from small unmanned aircraft systems (sUAS) conducted during a one-day measurement campaign. The computed H was found to be comparable to the micrometeorological measurements to within 5–10 W m−2. Furthermore, when comparing H computed using this technique with H determined using large-eddy simulations (LES), differences of <10 W m−2 were typically found. Thus, implementing this technique using observations from sUAS will help determine sensible heat flux variability at horizontal spatial scales larger than can be provided from flux tower measurements alone.


2013 ◽  
Vol 17 (14) ◽  
pp. 1-22 ◽  
Author(s):  
Allison L. Steiner ◽  
Dori Mermelstein ◽  
Susan J. Cheng ◽  
Tracy E. Twine ◽  
Andrew Oliphant

Abstract Atmospheric aerosols scatter and potentially absorb incoming solar radiation, thereby reducing the total amount of radiation reaching the surface and increasing the fraction that is diffuse. The partitioning of incoming energy at the surface into sensible heat flux and latent heat flux is postulated to change with increasing aerosol concentrations, as an increase in diffuse light can reach greater portions of vegetated canopies. This can increase photosynthesis and transpiration rates in the lower canopy and potentially decrease the ratio of sensible to latent heat for the entire canopy. Here, half-hourly and hourly surface fluxes from six Flux Network (FLUXNET) sites in the coterminous United States are evaluated over the past decade (2000–08) in conjunction with satellite-derived aerosol optical depth (AOD) to determine if atmospheric aerosols systematically influence sensible and latent heat fluxes. Satellite-derived AOD is used to classify days as high or low AOD and establish the relationship between aerosol concentrations and the surface energy fluxes. High AOD reduces midday net radiation by 6%–65% coupled with a 9%–30% decrease in sensible and latent heat fluxes, although not all sites exhibit statistically significant changes. The partitioning between sensible and latent heat varies between ecosystems, with two sites showing a greater decrease in latent heat than sensible heat (Duke Forest and Walker Branch), two sites showing equivalent reductions (Harvard Forest and Bondville), and one site showing a greater decrease in sensible heat than latent heat (Morgan–Monroe). These results suggest that aerosols trigger an ecosystem-dependent response to surface flux partitioning, yet the environmental drivers for this response require further exploration.


2013 ◽  
Vol 13 (9) ◽  
pp. 4645-4666 ◽  
Author(s):  
H. C. Ward ◽  
J. G. Evans ◽  
C. S. B. Grimmond

Abstract. Eddy covariance measurements of the turbulent sensible heat, latent heat and carbon dioxide fluxes for 12 months (2011–2012) are reported for the first time for a suburban area in the UK. The results from Swindon are comparable to suburban studies of similar surface cover elsewhere but reveal large seasonal variability. Energy partitioning favours turbulent sensible heat during summer (midday Bowen ratio 1.4–1.6) and latent heat in winter (0.05–0.7). A significant proportion of energy is stored (and released) by the urban fabric and the estimated anthropogenic heat flux is small but non-negligible (0.5–0.9 MJ m−2 day−1). The sensible heat flux is negative at night and for much of winter daytimes, reflecting the suburban nature of the site (44% vegetation) and relatively low built fraction (16%). Latent heat fluxes appear to be water limited during a dry spring in both 2011 and 2012, when the response of the surface to moisture availability can be seen on a daily timescale. Energy and other factors are more relevant controls at other times; at night the wind speed is important. On average, surface conductance follows a smooth, asymmetrical diurnal course peaking at around 6–9 mm s−1, but values are larger and highly variable in wet conditions. The combination of natural (vegetative) and anthropogenic (emission) processes is most evident in the temporal variation of the carbon flux: significant photosynthetic uptake is seen during summer, whilst traffic and building emissions explain peak release in winter (9.5 g C m−2 day−1). The area is a net source of CO2 annually. Analysis by wind direction highlights the role of urban vegetation in promoting evapotranspiration and offsetting CO2 emissions, especially when contrasted against peak traffic emissions from sectors with more roads. Given the extent of suburban land use, these results have important implications for understanding urban energy, water and carbon dynamics.


2006 ◽  
Vol 7 (4) ◽  
pp. 678-686 ◽  
Author(s):  
Zuohao Cao ◽  
Jianmin Ma ◽  
Wayne R. Rouse

Abstract In this study, the authors have performed the variational computations for surface sensible heat fluxes over a large northern lake using observed wind, temperature gradient, and moisture gradient. In contrast with the conventional (Monin–Obukhov similarity theory) MOST-based flux-gradient method, the variational approach sufficiently utilizes observational meteorological conditions over the lake, where the conventional flux-gradient method performs poorly. Verifications using direct eddy-correlation measurements over Great Slave Lake, the fifth largest lake in North America in terms of surface area, during the open water period of 1999 demonstrate that the variational method yields good agreements between the computed and the measured sensible heat fluxes. It is also demonstrated that the variational method is more accurate than the flux-gradient method in computations of sensible heat flux across the air–water interface.


2009 ◽  
Vol 6 (2) ◽  
pp. 2099-2127 ◽  
Author(s):  
W. J. Timmermans ◽  
Z. Su ◽  
A. Olioso

Abstract. Scintillometry is widely recognized as a potential tool for obtaining spatially aggregated sensible heat fluxes. Although many investigations have been made over contrasting component surfaces, few aggregation schemes consider footprint contributions. In this paper an approach is presented to infer average sensible heat flux over a very heterogeneous landscape by using a large aperture scintillometer. The methodology is demonstrated on simulated data and tested on a time series of measurements obtained during the SPARC2004 experiment in Barrax, Spain. Results show that the two-dimensional footprint approach yields more accurate results of aggregated sensible heat flux than traditional methods.


Sign in / Sign up

Export Citation Format

Share Document