scholarly journals On the Derivation of Material Thermal Properties Representative of Heterogeneous Urban Neighborhoods

2009 ◽  
Vol 48 (8) ◽  
pp. 1725-1732 ◽  
Author(s):  
F. Salamanca ◽  
E. S. Krayenhoff ◽  
A. Martilli

Abstract An important question arises when modeling a heterogeneous landscape (e.g., an urbanized area) with a mesoscale atmospheric model. The surface within a grid cell of the model (which has a typical dimension of one or more kilometers) can be composed of patches of surfaces of different character. The total sensible heat flux in the grid cell, then, is the aggregate of the heat fluxes from each individual surface, each one with a unique thermal response arising from its thermal properties, among other factors. Current methods to estimate the sensible heat flux consider only one (in the case of flat terrain) or three (roof, walls, and ground, for urban areas) active surfaces with thermal properties that are ideally representative of the materials present in the grid cell. The question is then how to choose the representative thermal properties such that the heat flux computed by the model most closely approximates the aggregate of the fluxes from the different patches. In this work a new way to average building material thermal properties for urban canopy parameterizations is presented, and a suite of idealized numerical simulations demonstrates its superiority to two more standard averages. Moreover, this novel approach points to a new way of determining physical properties that are representative of heterogeneous zones.

2017 ◽  
Vol 2017 ◽  
pp. 1-10 ◽  
Author(s):  
Naixing Luo ◽  
Liping Zeng ◽  
Wenshi Lin ◽  
Fangzhou Li ◽  
Baolin Jiang ◽  
...  

The influences of urbanization on weather in Guangdong Province, China, were studied using the Weather Research and Forecasting model from 31 December 2009 through 3 January 2010. Model outputs were compared with extensive monitoring of meteorological data to examine the simulation ability. Model results between tests (with and without land-use change) show that the urbanization had major effects on meteorological fields across nearly the entire Pearl River Delta region and particularly in urban areas. Studied fields (wind speed, temperature, precipitation, and sensible and latent heat fluxes) were affected by the urbanization of the PRD region. The major influences occurred in urban areas, where wind speeds decreased greatly, while the daytime surface upward sensible heat flux clearly increased. Unlike the sensible heat flux, the latent heat flux had a nonmonotonic increase or decrease. As a consequence of the two heat fluxes, 2-m temperature varied with location and time. Change of precipitation was complex. The main rain band became more concentrated, while precipitation decreased upwind of the urban area and increased downwind.


2020 ◽  
Vol 66 (258) ◽  
pp. 543-555 ◽  
Author(s):  
Lindsey Nicholson ◽  
Ivana Stiperski

AbstractWe present the first direct comparison of turbulence conditions measured simultaneously over exposed ice and a 0.08 m thick supraglacial debris cover on Suldenferner, a small glacier in the Italian Alps. Surface roughness, sensible heat fluxes (~20–50 W m−2), latent heat fluxes (~2–10 W m−2), topology and scale of turbulence are similar over both glacier surface types during katabatic and synoptically disturbed conditions. Exceptions are sunny days when buoyant convection becomes significant over debris-covered ice (sensible heat flux ~ −100 W m−2; latent heat flux ~ −30 W m−2) and prevailing katabatic conditions are rapidly broken down even over this thin debris cover. The similarity in turbulent properties implies that both surface types can be treated the same in terms of boundary layer similarity theory. The differences in turbulence between the two surface types on this glacier are dominated by the radiative and thermal contrasts, thus during sunny days debris cover alters both the local surface turbulent energy fluxes and the glacier component of valley circulation. These variations under different flow conditions should be accounted for when distributing temperature fields for modeling applications over partially debris-covered glaciers.


2020 ◽  
Vol 142 (1-2) ◽  
pp. 701-728
Author(s):  
Denise Hertwig ◽  
Sue Grimmond ◽  
Margaret A. Hendry ◽  
Beth Saunders ◽  
Zhengda Wang ◽  
...  

Abstract Two urban schemes within the Joint UK Land Environment Simulator (JULES) are evaluated offline against multi-year flux observations in the densely built-up city centre of London and in suburban Swindon (UK): (i) the 1-tile slab model, used in climate simulations; (ii) the 2-tile canopy model MORUSES (Met Office–Reading Urban Surface Exchange Scheme), used for numerical weather prediction over the UK. Offline, both models perform better at the suburban site, where differences between the urban schemes are less pronounced due to larger vegetation fractions. At both sites, the outgoing short- and longwave radiation is more accurately represented than the turbulent heat fluxes. The seasonal variations of model skill are large in London, where the sensible heat flux in autumn and winter is strongly under-predicted if the large city centre magnitudes of anthropogenic heat emissions are not represented. The delayed timing of the sensible heat flux in the 1-tile model in London results in large negative bias in the morning. The partitioning of the urban surface into canyon and roof in MORUSES improves this as the roof tile is modelled with a very low thermal inertia, but phase and amplitude of the grid box-averaged flux critically depend on accurate knowledge of the plan-area fractions of streets and buildings. Not representing non-urban land cover (e.g. vegetation, inland water) in London results in severely under-predicted latent heat fluxes. Control runs demonstrate that the skill of both models can be greatly improved by providing accurate land cover and morphology information and using representative anthropogenic heat emissions, which is essential if the model output is intended to inform integrated urban services.


2020 ◽  
Author(s):  
Yaoming Ma

<p>The exchange of heat and water vapor between land surface and atmosphere over the Third Pole region (Tibetan Plateau and nearby surrounding region) plays an important role in Asian monsoon, westerlies and the northern hemisphere weather and climate systems. Supported by various agencies in the People’s Republic of China, a Third Pole Environment (TPE) observation and research Platform (TPEORP) is now implementing over the Third Pole region. The background of the establishment of the TPEORP, the establishing and monitoring plan of long-term scale (5-10 years) of it will be shown firstly. Then the preliminary observational analysis results, such as the characteristics of land surface energy fluxes partitioning and the turbulent characteristics will also been shown in this study. Then, the parameterization methodology based on satellite data and the atmospheric boundary layer (ABL) observations has been proposed and tested for deriving regional distribution of net radiation flux, soil heat flux, sensible heat flux and latent heat flux (evapotranspiration (ET)) and their variation trends over the heterogeneous landscape of the Tibetan Plateau (TP) area. To validate the proposed methodology, the ground measured net radiation flux, soil heat flux, sensible heat flux and latent heat flux of the TPEORP are compared to the derived values. The results showed that the derived land surface heat fluxes over the study areas are in good accordance with the land surface status. These parameters show a wide range due to the strong contrast of surface feature. And the estimated land surface heat fluxes are in good agreement with ground measurements, and all the absolute percent difference in less than 10% in the validation sites. The sensible heat flux has increased slightly and the latent heat flux has decreased from 2001 to 2016 over the TP. It is therefore conclude that the proposed methodology is successful for the retrieval of land surface heat fluxes and ET over heterogeneous landscape of the TP area. Further improvement of the methodology and its applying field over the whole Third Pole region and Pan-Third Pole region were also discussed.</p>


2017 ◽  
Vol 34 (9) ◽  
pp. 2103-2112 ◽  
Author(s):  
Temple R. Lee ◽  
Michael Buban ◽  
Edward Dumas ◽  
C. Bruce Baker

AbstractUpscaling point measurements from micrometeorological towers is a challenging task that is important for a variety of applications, for example, in process studies of convection initiation, carbon and energy budget studies, and the improvement of model parameterizations. In the present study, a technique was developed to determine the horizontal variability in sensible heat flux H surrounding micrometeorological towers. The technique was evaluated using 15-min flux observations, as well as measurements of land surface temperature and air temperature obtained from small unmanned aircraft systems (sUAS) conducted during a one-day measurement campaign. The computed H was found to be comparable to the micrometeorological measurements to within 5–10 W m−2. Furthermore, when comparing H computed using this technique with H determined using large-eddy simulations (LES), differences of <10 W m−2 were typically found. Thus, implementing this technique using observations from sUAS will help determine sensible heat flux variability at horizontal spatial scales larger than can be provided from flux tower measurements alone.


2013 ◽  
Vol 17 (14) ◽  
pp. 1-22 ◽  
Author(s):  
Allison L. Steiner ◽  
Dori Mermelstein ◽  
Susan J. Cheng ◽  
Tracy E. Twine ◽  
Andrew Oliphant

Abstract Atmospheric aerosols scatter and potentially absorb incoming solar radiation, thereby reducing the total amount of radiation reaching the surface and increasing the fraction that is diffuse. The partitioning of incoming energy at the surface into sensible heat flux and latent heat flux is postulated to change with increasing aerosol concentrations, as an increase in diffuse light can reach greater portions of vegetated canopies. This can increase photosynthesis and transpiration rates in the lower canopy and potentially decrease the ratio of sensible to latent heat for the entire canopy. Here, half-hourly and hourly surface fluxes from six Flux Network (FLUXNET) sites in the coterminous United States are evaluated over the past decade (2000–08) in conjunction with satellite-derived aerosol optical depth (AOD) to determine if atmospheric aerosols systematically influence sensible and latent heat fluxes. Satellite-derived AOD is used to classify days as high or low AOD and establish the relationship between aerosol concentrations and the surface energy fluxes. High AOD reduces midday net radiation by 6%–65% coupled with a 9%–30% decrease in sensible and latent heat fluxes, although not all sites exhibit statistically significant changes. The partitioning between sensible and latent heat varies between ecosystems, with two sites showing a greater decrease in latent heat than sensible heat (Duke Forest and Walker Branch), two sites showing equivalent reductions (Harvard Forest and Bondville), and one site showing a greater decrease in sensible heat than latent heat (Morgan–Monroe). These results suggest that aerosols trigger an ecosystem-dependent response to surface flux partitioning, yet the environmental drivers for this response require further exploration.


2014 ◽  
Vol 15 (3) ◽  
pp. 1078-1090 ◽  
Author(s):  
Wenjing Zhao ◽  
Ning Zhang ◽  
Jianning Sun ◽  
Jun Zou

Abstract An offline single-layer urban canopy model (SLUCM) was driven by the surface energy balance observations in winter in Nanjing, China, to evaluate the capability of the model to simulate the urban surface energy balance. The results of the evaluation suggest that the simulated daytime net radiation is approximately 20% lower than the observed and display relatively high systematic error, which is due to the relatively poor capacity of the model to simulate the daytime longwave radiation (which is underestimated by approximately 35%). By contrast, the simulated sensible heat flux shows mainly unsystematic error. Moreover, the one-at-a-time method is used to conduct a sensitivity analysis of the model parameters. The sensitivity analysis demonstrates that the major factors affecting the surface energy balance are the albedo, the thermal conductivity, and the roof and wall volumetric heat capacity. The influences of the shape of the street canyon and the average height of buildings are relatively weaker. The effects of the albedo on the fluxes are nearly linear. The effects of the thermal parameters are approximately logarithmic. Furthermore, the simulated sensible heat flux in the SLUCM is insensitive to the morphological parameters of the buildings.


2005 ◽  
Vol 118 (3) ◽  
pp. 449-476 ◽  
Author(s):  
J. -P. Lagouarde ◽  
M. Irvine ◽  
J. -M. Bonnefond ◽  
C. S. B. Grimmond ◽  
N. Long ◽  
...  

2006 ◽  
Vol 7 (4) ◽  
pp. 678-686 ◽  
Author(s):  
Zuohao Cao ◽  
Jianmin Ma ◽  
Wayne R. Rouse

Abstract In this study, the authors have performed the variational computations for surface sensible heat fluxes over a large northern lake using observed wind, temperature gradient, and moisture gradient. In contrast with the conventional (Monin–Obukhov similarity theory) MOST-based flux-gradient method, the variational approach sufficiently utilizes observational meteorological conditions over the lake, where the conventional flux-gradient method performs poorly. Verifications using direct eddy-correlation measurements over Great Slave Lake, the fifth largest lake in North America in terms of surface area, during the open water period of 1999 demonstrate that the variational method yields good agreements between the computed and the measured sensible heat fluxes. It is also demonstrated that the variational method is more accurate than the flux-gradient method in computations of sensible heat flux across the air–water interface.


Sign in / Sign up

Export Citation Format

Share Document