scholarly journals A New Technique to Estimate Sensible Heat Fluxes around Micrometeorological Towers Using Small Unmanned Aircraft Systems

2017 ◽  
Vol 34 (9) ◽  
pp. 2103-2112 ◽  
Author(s):  
Temple R. Lee ◽  
Michael Buban ◽  
Edward Dumas ◽  
C. Bruce Baker

AbstractUpscaling point measurements from micrometeorological towers is a challenging task that is important for a variety of applications, for example, in process studies of convection initiation, carbon and energy budget studies, and the improvement of model parameterizations. In the present study, a technique was developed to determine the horizontal variability in sensible heat flux H surrounding micrometeorological towers. The technique was evaluated using 15-min flux observations, as well as measurements of land surface temperature and air temperature obtained from small unmanned aircraft systems (sUAS) conducted during a one-day measurement campaign. The computed H was found to be comparable to the micrometeorological measurements to within 5–10 W m−2. Furthermore, when comparing H computed using this technique with H determined using large-eddy simulations (LES), differences of <10 W m−2 were typically found. Thus, implementing this technique using observations from sUAS will help determine sensible heat flux variability at horizontal spatial scales larger than can be provided from flux tower measurements alone.

2020 ◽  
Author(s):  
Yaoming Ma

&lt;p&gt;The exchange of heat and water vapor between land surface and atmosphere over the Third Pole region (Tibetan Plateau and nearby surrounding region) plays an important role in Asian monsoon, westerlies and the northern hemisphere weather and climate systems. Supported by various agencies in the People&amp;#8217;s Republic of China, a Third Pole Environment (TPE) observation and research Platform (TPEORP) is now implementing over the Third Pole region. The background of the establishment of the TPEORP, the establishing and monitoring plan of long-term scale (5-10 years) of it will be shown firstly. Then the preliminary observational analysis results, such as the characteristics of land surface energy fluxes partitioning and the turbulent characteristics will also been shown in this study. Then, the parameterization methodology based on satellite data and the atmospheric boundary layer (ABL) observations has been proposed and tested for deriving regional distribution of net radiation flux, soil heat flux, sensible heat flux and latent heat flux (evapotranspiration (ET)) and their variation trends over the heterogeneous landscape of the Tibetan Plateau (TP) area. To validate the proposed methodology, the ground measured net radiation flux, soil heat flux, sensible heat flux and latent heat flux of the TPEORP are compared to the derived values. The results showed that the derived land surface heat fluxes over the study areas are in good accordance with the land surface status. These parameters show a wide range due to the strong contrast of surface feature. And the estimated land surface heat fluxes are in good agreement with ground measurements, and all the absolute percent difference in less than 10% in the validation sites. The sensible heat flux has increased slightly and the latent heat flux has decreased from 2001 to 2016 over the TP. It is therefore conclude that the proposed methodology is successful for the retrieval of land surface heat fluxes and ET over heterogeneous landscape of the TP area. Further improvement of the methodology and its applying field over the whole Third Pole region and Pan-Third Pole region were also discussed.&lt;/p&gt;


2019 ◽  
Vol 11 (24) ◽  
pp. 2899
Author(s):  
Nan Ge ◽  
Lei Zhong ◽  
Yaoming Ma ◽  
Meilin Cheng ◽  
Xian Wang ◽  
...  

Land surface heat fluxes consist of the net radiation flux, soil heat flux, sensible heat flux, and latent heat flux. The estimation of these fluxes is essential to the study of energy transfer in land–atmosphere systems. In this paper, Landsat 7 ETM+ SLC-on data were applied to estimate the land surface heat fluxes on the northern Tibetan Plateau using the SEBS (surface energy balance system) model, in combination with the calculation of field measurements at CAMP/Tibet (Coordinated Enhanced Observing Period (CEOP) Asia–Australia Monsoon Project on the Tibetan Plateau) automatic weather stations based on the combinatory method (CM) for comparison. The root mean square errors between the satellite estimations and the CM calculations for the net radiation flux, soil heat flux, sensible heat flux, and latent heat flux were 49.2 W/m2, 46.3 W/m2, 68.2 W/m2, and 54.9 W/m2, respectively. The results reveal that land surface heat fluxes all present significant seasonal variability. Apart from the sensible heat flux, the satellite-estimated net radiation flux, soil heat flux, and latent heat flux exhibited a trend of summer > spring > autumn > winter. In summer, spring, autumn, and winter, respectively, the median values of the net radiation flux (631.8 W/m2, 583.0 W/m2, 404.4 W/m2, 314.3 W/m2), soil heat flux (40.9 W/m2, 37.9 W/m2, 26.1 W/m2, 20.5 W/m2), sensible heat flux (252.7 W/m2, 219.5 W/m2, 221.4 W/m2, 204.8 W/m2), and latent heat flux (320.1 W/m2, 298.3 W/m2, 142.3 W/m2, 75.5 W/m2) exhibited distinct seasonal diversity. From November to April, the in situ sensible heat flux is higher than the latent heat flux; the opposite is true between June and September, leaving May and October as transitional months. For water bodies, alpine meadows and other main underlying surface types, sensible and latent heat flux generally present contrasting and complementary spatial distributions. Due to the 15–60 m resolution of the Landsat 7 ETM+ data, the distribution of land surface heat fluxes can be used as an indicator of complex underlying surface types over the northern Tibetan Plateau.


2020 ◽  
Author(s):  
E. Hugo Berbery ◽  
Eli Dennis

&lt;p&gt;The land surface is inextricably linked to the atmospheric circulation as it dictates the location and strength of land surface-atmosphere (LA) coupling mechanisms. In this context, soil hydraulic properties are critical to estimate sub-surface processes and fluxes at the surface. &amp;#160;In most numerical weather and climate models, those properties are assigned through maps of soil texture complemented with look-up tables.&amp;#160; Then, the hydraulic properties are used in a large variety of process parameterizations within the models.&amp;#160; In this study, we investigate the sensitivity of the simulated regional climate to changes in the prescribed soil maps in the WRF/CLM4 modeling suite. &amp;#160;Comparison of two widely used soil texture databases, the USGS State Soil Geographic Database (STATSGO) and Beijing Normal University&amp;#8217;s soil texture database (GSDE), over the United States and Central America reveals that only 32% of soil texture classifications are in common. Further, the differences are not random but tend to depict small-to-large spatial patterns with a preponderance of either finer or coarser grains. Over North America, the US Great Plains have finer grains in GSDE than in STATSGO, while the opposite is true over Central Mexico.&lt;/p&gt;&lt;p&gt;&amp;#160;&lt;/p&gt;&lt;p&gt;Seasonal simulations were carried out to assess the changes in the soil-water system that result from changing the soil types (GSDE vs. STATSGO) and their corresponding hydraulic properties. Wherever GSDE has finer grains than STATSGO (e.g., over the US Great Plains), the soil will retain water more strongly as evidenced by smaller latent heat fluxes and larger sensible heat flux. On the other hand, areas of coarser grains in GSDE (e.g., over central Mexico) exhibit an increase in latent heat fluxes and a corresponding decrease in sensible heat flux. Regions with an increase/decrease in latent heat flux have a corresponding increase/decrease in the 2-m moisture content. Similar relations are obtained between sensible heat flux and 2-m temperature. These changes also affect the atmospheric column, which responds with an increase/decrease of temperature and height of the planetary boundary layer. Changes in the vertical structure induce changes in the vertical instability and winds. Interestingly, the chain of modifications resulting from soil texture changes impact the moisture fluxes, and more generally, the atmospheric water budget.&lt;/p&gt;


2021 ◽  
Author(s):  
Yaoming Ma ◽  
Zeyong Hu ◽  
Binbin Wang ◽  
Lei Zhong ◽  
Weiqiang Ma ◽  
...  

&lt;p&gt;The exchange of heat and water vapor between land surface and atmosphere over the Third Pole region (Tibetan Plateau and nearby surrounding region) plays an important role in Asian monsoon, westerlies and the northern hemisphere weather and climate systems. Supported by various agencies in the People&amp;#8217;s Republic of China, a Third Pole Environment (TPE) observation and research Platform (TPEORP) is now implementing over the Third Pole region. The background of the establishment of the TPEORP, the establishing and monitoring plan of long-term scale (5-10 years) of it will be shown firstly. Then the preliminary observational analysis results, such as the characteristics of land surface energy fluxes partitioning and the turbulent characteristics will also been shown in this study. Then, the parameterization methodology based on satellite data and the atmospheric boundary layer (ABL) observations has been proposed and tested for deriving regional distribution of net radiation flux, soil heat flux, sensible heat flux and latent heat flux (evapotranspiration (ET)) and their variation trends over the heterogeneous landscape of the Tibetan Plateau (TP) area. To validate the proposed methodology, the ground measured net radiation flux, soil heat flux, sensible heat flux and latent heat flux of the TPEORP are compared to the derived values. The results showed that the derived land surface heat fluxes over the study areas are in good accordance with the land surface status. These parameters show a wide range due to the strong contrast of surface feature. And the estimated land surface heat fluxes are in good agreement with ground measurements, and all the absolute percent difference in less than 10% in the validation sites. The sensible heat flux has increased slightly and the latent heat flux has decreased from 2001 to 2018 over the TP. It is therefore conclude that the proposed methodology is successful for the retrieval of land surface heat fluxes and ET over heterogeneous landscape of the TP area. Further improvement of the methodology and its applying field over the whole Third Pole region and Pan-Third Pole region were also discussed.&lt;/p&gt;


2007 ◽  
Vol 46 (2) ◽  
pp. 183-195 ◽  
Author(s):  
Yuichiro Oku ◽  
Hirohiko Ishikawa ◽  
Zhongbo Su

Abstract A Surface Energy Balance System (SEBS) originally developed for the NOAA Advanced Very High Resolution Radiometer was applied to Geostationary Meteorological Satellite (GMS)-5 Visible/Infrared Spin-Scan Radiometer data that were supplemented with other meteorological data. GMS-5, which is a geostationary satellite, recorded continuous hourly information. Surface temperatures obtained from the GMS-5 data were entered into SEBS to estimate the hourly regional distribution of the surface heat fluxes over the Tibetan Plateau. The estimated fluxes are verified by using corresponding field observations. The diurnal cycle of estimated fluxes agreed well with the field measurements. For example, the diurnal range of the estimated sensible heat flux decreases from June to August. This reflects the change of dry to wet surface characteristics resulting from frequent precipitation during the summer monsoon. Over the Tibetan Plateau, the diurnal range of the surface temperature is as large as the annual range, so that the resultant sensible heat flux has a large diurnal variation. Thus, the hourly estimation based on the GMS data may contribute to a better understanding of the land surface–atmosphere interaction in this critical area.


2018 ◽  
Vol 31 (15) ◽  
pp. 6073-6095 ◽  
Author(s):  
Amanda L. Siemann ◽  
Nathaniel Chaney ◽  
Eric F. Wood

Sensible heat flux is a turbulent flux driving interactions between the Earth’s surface and the atmosphere, propelling local and regional climate. While turbulent fluxes are measured in situ, global scales require estimates at larger spatial scales, which can be made using remotely sensed satellite data. This study uses a first-order approximation to calculate the unconstrained hourly, terrestrial, 0.5°-resolution sensible heat flux using a land surface temperature consistent with the High Resolution Infrared Radiation Sounder (HIRS) retrievals, six reanalysis-based air temperature products, and a dataset of Zilitinkevich empirical constant Czilvalues. This sensible heat flux dataset is constrained using the daily Bowen ratio and available energy, to produce nine constrained, daily products. All resulting global, terrestrial averages are within the uncertainty range of ±6.3 W m−2from the 38.8 W m−2global annual average previously reported in the literature. The product constrained with the net radiation using the Moderate Resolution Infrared Spectroradiometer (MODIS) albedo and air temperature from the National Centers for Environmental Protection (NCEP) Climate Forecast System Reanalysis (CFSR) performs closest to the FLUXNET ground observations in the monthly analysis. These sensible heat flux estimates should be used for benchmarking global climate models at monthly or annual scales, and improvements should be made to the accuracy of input variables, particularly the temperature gradient, Czilestimates, and the roughness length.


2021 ◽  
Vol 22 (10) ◽  
pp. 2547-2564
Author(s):  
Georg Lackner ◽  
Daniel F. Nadeau ◽  
Florent Domine ◽  
Annie-Claude Parent ◽  
Gonzalo Leonardini ◽  
...  

AbstractRising temperatures in the southern Arctic region are leading to shrub expansion and permafrost degradation. The objective of this study is to analyze the surface energy budget (SEB) of a subarctic shrub tundra site that is subject to these changes, on the east coast of Hudson Bay in eastern Canada. We focus on the turbulent heat fluxes, as they have been poorly quantified in this region. This study is based on data collected by a flux tower using the eddy covariance approach and focused on snow-free periods. Furthermore, we compare our results with those from six Fluxnet sites in the Arctic region and analyze the performance of two land surface models, SVS and ISBA, in simulating soil moisture and turbulent heat fluxes. We found that 23% of the net radiation was converted into latent heat flux at our site, 35% was used for sensible heat flux, and about 15% for ground heat flux. These results were surprising considering our site was by far the wettest site among those studied, and most of the net radiation at the other Arctic sites was consumed by the latent heat flux. We attribute this behavior to the high hydraulic conductivity of the soil (littoral and intertidal sediments), typical of what is found in the coastal regions of the eastern Canadian Arctic. Land surface models overestimated the surface water content of those soils but were able to accurately simulate the turbulent heat flux, particularly the sensible heat flux and, to a lesser extent, the latent heat flux.


2020 ◽  
Vol 66 (258) ◽  
pp. 543-555 ◽  
Author(s):  
Lindsey Nicholson ◽  
Ivana Stiperski

AbstractWe present the first direct comparison of turbulence conditions measured simultaneously over exposed ice and a 0.08 m thick supraglacial debris cover on Suldenferner, a small glacier in the Italian Alps. Surface roughness, sensible heat fluxes (~20–50 W m−2), latent heat fluxes (~2–10 W m−2), topology and scale of turbulence are similar over both glacier surface types during katabatic and synoptically disturbed conditions. Exceptions are sunny days when buoyant convection becomes significant over debris-covered ice (sensible heat flux ~ −100 W m−2; latent heat flux ~ −30 W m−2) and prevailing katabatic conditions are rapidly broken down even over this thin debris cover. The similarity in turbulent properties implies that both surface types can be treated the same in terms of boundary layer similarity theory. The differences in turbulence between the two surface types on this glacier are dominated by the radiative and thermal contrasts, thus during sunny days debris cover alters both the local surface turbulent energy fluxes and the glacier component of valley circulation. These variations under different flow conditions should be accounted for when distributing temperature fields for modeling applications over partially debris-covered glaciers.


2020 ◽  
Vol 142 (1-2) ◽  
pp. 701-728
Author(s):  
Denise Hertwig ◽  
Sue Grimmond ◽  
Margaret A. Hendry ◽  
Beth Saunders ◽  
Zhengda Wang ◽  
...  

Abstract Two urban schemes within the Joint UK Land Environment Simulator (JULES) are evaluated offline against multi-year flux observations in the densely built-up city centre of London and in suburban Swindon (UK): (i) the 1-tile slab model, used in climate simulations; (ii) the 2-tile canopy model MORUSES (Met Office–Reading Urban Surface Exchange Scheme), used for numerical weather prediction over the UK. Offline, both models perform better at the suburban site, where differences between the urban schemes are less pronounced due to larger vegetation fractions. At both sites, the outgoing short- and longwave radiation is more accurately represented than the turbulent heat fluxes. The seasonal variations of model skill are large in London, where the sensible heat flux in autumn and winter is strongly under-predicted if the large city centre magnitudes of anthropogenic heat emissions are not represented. The delayed timing of the sensible heat flux in the 1-tile model in London results in large negative bias in the morning. The partitioning of the urban surface into canyon and roof in MORUSES improves this as the roof tile is modelled with a very low thermal inertia, but phase and amplitude of the grid box-averaged flux critically depend on accurate knowledge of the plan-area fractions of streets and buildings. Not representing non-urban land cover (e.g. vegetation, inland water) in London results in severely under-predicted latent heat fluxes. Control runs demonstrate that the skill of both models can be greatly improved by providing accurate land cover and morphology information and using representative anthropogenic heat emissions, which is essential if the model output is intended to inform integrated urban services.


2010 ◽  
Vol 4 (Special Issue 2) ◽  
pp. S49-S58 ◽  
Author(s):  
J. Brom ◽  
J. Procházka ◽  
A. Rejšková

The dissipation of solar energy and consequently the formation of the hydrological cycle are largely dependent on the structural and optical characteristics of the land surface. In our study, we selected seven units with different types of vegetation in the Mlýnský and Horský catchments (South-Eastern part of the Šumava Mountains, Czech Republic) for the assessment of the differences in their functioning expressed through the surface temperature, humidity, and energy dissipation. For our analyses, we used Landsat 5 TM satellite data from June 25<SUP>th</SUP>, 2008. The results showed that the microclimatic characteristics and energy fluxes varied in different units according to their vegetation characteristics. A cluster analysis of the mean values was used to divide the vegetation units into groups according to their functional characteristics. The mown meadows were characterised by the highest surface temperature and sensible heat flux and the lowest humidity and latent heat flux. On the contrary, the lowest surface temperature and sensible heat flux and the highest humidity and latent heat flux were found in the forest. Our results showed that the climatic and energetic features of the land surface are related to the type of vegetation. We state that the spatial distribution of different vegetation units and the amount of biomass are crucial variables influencing the functioning of the landscape.


Sign in / Sign up

Export Citation Format

Share Document