Microphysics of Maritime Tropical Convective Updrafts at Temperatures from −20° to −60°

2009 ◽  
Vol 66 (12) ◽  
pp. 3530-3562 ◽  
Author(s):  
Andrew J. Heymsfield ◽  
Aaron Bansemer ◽  
Gerald Heymsfield ◽  
Alexandre O. Fierro

Abstract Anvils produced by vigorous tropical convection contribute significantly to the earth’s radiation balance, and their radiative properties depend largely on the concentrations and sizes of the ice particles that form them. These microphysical properties are determined to an important extent by the fate of supercooled droplets, with diameters from 3 to about 20 microns, lofted in the updrafts. The present study addresses the question of whether most or all of these droplets are captured by ice particles or if they remain uncollected until arriving at the −38°C level where they freeze by homogeneous nucleation, producing high concentrations of very small ice particles that can persist and dominate the albedo. Aircraft data of ice particle and water droplet size distributions from seven field campaigns at latitudes from 25°N to 11°S are combined with a numerical model in order to examine the conditions under which significant numbers of supercooled water droplets can be lofted to the homogeneous nucleation level. Microphysical data were collected in pristine to heavily dust-laden maritime environments, isolated convective updrafts, and tropical cyclone updrafts with peak velocities reaching 25 m s−1. The cumulative horizontal distance of in-cloud sampling at temperatures of −20°C and below exceeds 50 000 km. Analysis reveals that most of the condensate in these convective updrafts is removed before reaching the −20°C level, and the total condensate continues to diminish linearly upward. The amount of condensate in small (<50 μm in diameter) droplets and ice particles, however, increases upward, suggesting new droplet activation with an appreciable radiative impact. Conditions promoting the generation of large numbers of small ice particles through homogeneous ice nucleation include high concentrations of cloud condensation nuclei (sometimes from dust), removal of most of the water substance between cloud base and the −38°C levels, and acceleration of the updrafts at mid- and upper levels such that velocities exceed 5–7 m s−1.

2005 ◽  
Vol 62 (1) ◽  
pp. 41-64 ◽  
Author(s):  
Andrew J. Heymsfield ◽  
Larry M. Miloshevich ◽  
Carl Schmitt ◽  
Aaron Bansemer ◽  
Cynthia Twohy ◽  
...  

Abstract This study uses a unique set of microphysical measurements obtained in a vigorous, convective updraft core at temperatures between −33° and −36°C, together with a microphysical model, to investigate the role of homogeneous ice nucleation in deep tropical convection and how it influences the microphysical properties of the associated cirrus anvils. The core and anvil formed along a sea-breeze front during the Cirrus Regional Study of Tropical Anvils and Cirrus Layers–Florida Area Cirrus Experiment (CRYSTAL–FACE). The updraft core contained two distinct regions as traversed horizontally: the upwind portion of the core contained droplets of diameter 10–20 μm in concentrations of around 100 cm−3 with updraft speeds of 5–10 m s−1; the downwind portion of the core was glaciated with high concentrations of small ice particles and stronger updrafts of 10–20 m s−1. Throughout the core, rimed particles up to 0.6-cm diameter were observed. The anvil contained high concentrations of both small particles and large aggregates. Thermodynamic analysis suggests that the air sampled in the updraft core was mixed with air from higher altitudes that descended along the upwind edge of the cloud in an evaporatively driven downdraft, introducing free-tropospheric cloud condensation nuclei into the updraft below the aircraft sampling height. Farther downwind in the glaciated portion of the core, the entrained air contained high concentrations of ice particles that inhibit droplet formation and homogeneous nucleation. Calculations of droplet and ice particle growth and homogeneous ice nucleation are used to investigate the influence of large ice particles lofted in updrafts from lower levels in this and previously studied tropical ice clouds on the homogeneous nucleation process. The preexisting large ice particles act to suppress homogeneous nucleation through competition via diffusional and accretional growth, mainly when the updrafts are < 5 m s−1. In deep convective updrafts > 5–10 m s−1, the anvil is the depository for the small, radiatively important ice particles (homogeneously nucleated) and the large ice particles from below (heterogeneously or secondarily produced, or recycled).


2014 ◽  
Vol 27 (10) ◽  
pp. 3665-3682 ◽  
Author(s):  
Xiquan Dong ◽  
Baike Xi ◽  
Aaron Kennedy ◽  
Patrick Minnis ◽  
Robert Wood

Abstract A 19-month record of total and single-layered low (<3 km), middle (3–6 km), and high (>6 km) cloud fractions (CFs) and the single-layered marine boundary layer (MBL) cloud macrophysical and microphysical properties was generated from ground-based measurements at the Atmospheric Radiation Measurement Program (ARM) Azores site between June 2009 and December 2010. This is the most comprehensive dataset of marine cloud fraction and MBL cloud properties. The annual means of total CF and single-layered low, middle, and high CFs derived from ARM radar and lidar observations are 0.702, 0.271, 0.01, and 0.106, respectively. Greater total and single-layered high (>6 km) CFs occurred during the winter, whereas single-layered low (<3 km) CFs were more prominent during summer. Diurnal cycles for both total and low CFs were stronger during summer than during winter. The CFs are bimodally distributed in the vertical with a lower peak at ~1 km and a higher peak between 8 and 11 km during all seasons, except summer when only the low peak occurs. Persistent high pressure and dry conditions produce more single-layered MBL clouds and fewer total clouds during summer, whereas the low pressure and moist air masses during winter generate more total and multilayered clouds, and deep frontal clouds associated with midlatitude cyclones. The seasonal variations of cloud heights and thickness are also associated with the seasonal synoptic patterns. The MBL cloud layer is low, warm, and thin with large liquid water path (LWP) and liquid water content (LWC) during summer, whereas during winter it is higher, colder, and thicker with reduced LWP and LWC. The cloud LWP and LWC values are greater at night than during daytime. The monthly mean daytime cloud droplet effective radius re values are nearly constant, while the daytime droplet number concentration Nd basically follows the LWC variation. There is a strong correlation between cloud condensation nuclei (CCN) concentration NCCN and Nd during January–May, probably due to the frequent low pressure systems because upward motion brings more surface CCN to cloud base (well-mixed boundary layer). During summer and autumn, the correlation between Nd and NCCN is not as strong as that during January–May because downward motion from high pressure systems is predominant. Compared to the compiled aircraft in situ measurements during the Atlantic Stratocumulus Transition Experiment (ASTEX), the cloud microphysical retrievals in this study agree well with historical aircraft data. Different air mass sources over the ARM Azores site have significant impacts on the cloud microphysical properties and surface CCN as demonstrated by great variability in NCCN and cloud microphysical properties during some months.


2019 ◽  
Author(s):  
Pascal Polonik ◽  
Christoph Knote ◽  
Tobias Zinner ◽  
Florian Ewald ◽  
Tobias Kölling ◽  
...  

Abstract. The realistic representation of cloud-aerosol interactions is of primary importance for accurate climate model projections. The investigation of these interactions in strongly contrasting clean and polluted atmospheric conditions in the Amazon area has been one of the motivations for several field observations, including the airborne Aerosol, Cloud, Precipitation, and Radiation Interactions and DynamIcs of CONvective cloud systems – Cloud Processes of the Main Precipitation Systems in Brazil: A Contribution to Cloud Resolving Modeling and to the GPM (Global Precipitation Measurement) (ACRIDICON-CHUVA) campaign based in Manaus, Brazil in September 2014. In this work we combine in situ and remotely sensed aerosol, cloud, and atmospheric radiation data collected during ACRIDICON-CHUVA with regional, online-coupled chemistry-transport simulations to evaluate the model’s ability to represent the indirect effects of biomass burning aerosol on cloud microphysical properties (droplet number concentration and effective radius). We found agreement between modeled and observed median cloud droplet number concentrations (CDNC) for low values of CDNC, i.e., low levels of pollution. In general, a linear relationship between modeled and observed CDNC with a slope of two was found, which means a systematic underestimation of modeled CDNC as compared to measurements. Variability in cloud condensation nuclei (CCN) number concentrations and cloud droplet effective radii (reff) was also underestimated by the model. Modeled effective radius profiles began to saturate around 500 CCN per cm3 at cloud base, indicating an upper limit for the model sensitivity well below CCN concentrations reached during the burning season in the Amazon Basin. Regional background aerosol concentrations were sufficiently high such that the additional CCN emitted from local fires did not cause a notable change in modelled cloud microphysical properties. In addition, we evaluate a parameterization of CDNC at cloud base using more readily available cloud microphysical properties, aimed at in situ observations and satellite retrievals. Our study casts doubt on the validity of regional scale modeling studies of the cloud albedo effect in convective situations for polluted situations where the number concentration of CCN is greater than 500 cm−3.


2017 ◽  
Vol 17 (12) ◽  
pp. 7365-7386 ◽  
Author(s):  
Ramon Campos Braga ◽  
Daniel Rosenfeld ◽  
Ralf Weigel ◽  
Tina Jurkat ◽  
Meinrat O. Andreae ◽  
...  

Abstract. The objective of this study is to validate parameterizations that were recently developed for satellite retrievals of cloud condensation nuclei supersaturation spectra, NCCN(S), at cloud base alongside more traditional parameterizations connecting NCCN(S) with cloud base updrafts and drop concentrations. This was based on the HALO aircraft measurements during the ACRIDICON–CHUVA campaign over the Amazon region, which took place in September 2014. The properties of convective clouds were measured with a cloud combination probe (CCP), a cloud and aerosol spectrometer (CAS-DPOL), and a CCN counter onboard the HALO aircraft. An intercomparison of the cloud drop size distributions (DSDs) and the cloud water content (CWC) derived from the different instruments generally shows good agreement within the instrumental uncertainties. To this end, the directly measured cloud drop concentrations (Nd) near cloud base were compared with inferred values based on the measured cloud base updraft velocity (Wb) and NCCN(S) spectra. The measurements of Nd at cloud base were also compared with drop concentrations (Na) derived on the basis of an adiabatic assumption and obtained from the vertical evolution of cloud drop effective radius (re) above cloud base. The measurements of NCCN(S) and Wb reproduced the observed Nd within the measurements uncertainties when the old (1959) Twomey's parameterization was used. The agreement between the measured and calculated Nd was only within a factor of 2 with attempts to use cloud base S, as obtained from the measured Wb, Nd, and NCCN(S). This underscores the yet unresolved challenge of aircraft measurements of S in clouds. Importantly, the vertical evolution of re with height reproduced the observation-based nearly adiabatic cloud base drop concentrations, Na. The combination of these results provides aircraft observational support for the various components of the satellite-retrieved methodology that was recently developed to retrieve NCCN(S) under the base of convective clouds. This parameterization can now be applied with the proper qualifications to cloud simulations and satellite retrievals.


2021 ◽  
Author(s):  
Yichuan Wang ◽  
Yannian Zhu ◽  
Minghuai Wang ◽  
Daniel Rosenfeld ◽  
Yang Gao ◽  
...  

<p><span>In this study, a methodology for satellite retrieval of cloud condensation nuclei (CCN) in shallow marine boundary layer clouds is presented and validated. This methodology is based on retrieving cloud base drop concentration (N<sub>d</sub>) and updrafts (W<sub>b</sub>), which are used for calculating supersaturation (S). The N<sub>d</sub> is the activated CCN concentration in clouds at a given S. The accuracy of the satellite retrieval is validated against the surface-measured CCN of a cruise campaign over the heavily polluted northwest Pacific Ocean. Clouds which are coupled with the sea surface have good agreement between satellite retrieved N<sub>d</sub> and surface-measured CCN after performing corrections for temperature and adiabatic fraction. This study broadens the applicability of the methodology from aerosol-limited to contaminated regions. The validation shows ±30% accuracy in retrieving CCN of both clean and polluted regions. The results further demonstrate the strong dependence of marine shallow cloud N<sub>d</sub> on CCN number concentrations and updraft, which allows us to further apply this methodology to quantify the relationships between CCN and cloud microphysical properties and reduce the uncertainty of radiation forcing caused by aerosol cloud interaction (ACI).</span></p>


2016 ◽  
Author(s):  
Ramon Campos Braga ◽  
Daniel Rosenfeld ◽  
Ralf Weigel ◽  
Tina Jurkat ◽  
Meinrat O. Andreae ◽  
...  

Abstract. Reliable aircraft measurements of cloud microphysical properties are essential for understanding liquid convective cloud formation. In September 2014, the properties of convective clouds were measured with a Cloud Combination Probe (CCP), a Cloud and Aerosol Spectrometer (CAS-DPOL), and a cloud condensation nuclei (CCN) counter on board the HALO (High Altitude and Long Range Research Aircraft) aircraft during the ACRIDICON-CHUVA campaign over the Amazon region. An intercomparison of the cloud drop size distributions (DSDs) and the cloud water content derived from the different instruments generally shows good agreement within the instrumental uncertainties. The objective of this study is to validate several parameterizations for liquid cloud formation in tropical convection. To this end the directly measured cloud drop concentrations (Nd) near cloud base were compared with inferred values based on the measured cloud base updraft velocity (Wb) and cloud condensation nuclei (CCN) vs. supersaturation (S) spectra. The measurements of Nd at cloud base were also compared with drop concentrations (Na) derived on the basis of an adiabatic assumption and obtained from the vertical evolution of cloud drop effective radius (re) above cloud base. The results demonstrate agreement of the measured and theoretically expected values of Nd based on CCN, S, Wb at cloud base, and the height profile of re. The measurements of NCCN(S) and Wb did reproduce the observed Nd. Furthermore, the vertical evolution of re with height reproduced the observation-based nearly adiabatic cloud base drop concentrations, Na. Achieving such good agreement is possible only with accurate measurements of DSDs. This agreement supports the validity of the applied parameterizations for continental convective cloud evolution, which now can be used more confidently in simulations and satellite retrievals.


2011 ◽  
Vol 11 (15) ◽  
pp. 8003-8015 ◽  
Author(s):  
S. Lance ◽  
M. D. Shupe ◽  
G. Feingold ◽  
C. A. Brock ◽  
J. Cozic ◽  
...  

Abstract. We propose that cloud condensation nuclei (CCN) concentrations are important for modulating ice formation of Arctic mixed-phase clouds, through modification of the droplet size distribution. Aircraft observations from the Aerosol, Radiation, and Cloud Processes affecting Arctic Climate (ARCPAC) study in northern Alaska in April 2008 allow for identification and characterization of both aerosol and trace gas pollutants, which are then compared with cloud microphysical properties. Consistent with previous studies, we find that the concentration of precipitating ice particles (>400 μm) is correlated with the concentration of large droplets (>30 μm). We are further able to link the observed microphysical conditions to aerosol pollution, originating mainly from long range transport of biomass burning emissions. The case studies demonstrate that polluted mixed-phase clouds have narrower droplet size distributions and contain 1–2 orders of magnitude fewer precipitating ice particles than clean clouds at the same temperature. This suggests an aerosol indirect effect leading to greater cloud lifetime, greater cloud emissivity, and reduced precipitation. This result is opposite to the glaciation indirect effect, whereby polluted clouds are expected to precipitate more readily due to an increase in the concentration of particles acting as ice nuclei.


2012 ◽  
Vol 69 (9) ◽  
pp. 2787-2807 ◽  
Author(s):  
A. P. Khain ◽  
V. Phillips ◽  
N. Benmoshe ◽  
A. Pokrovsky

Abstract Some observational evidence—such as bimodal drop size distributions, comparatively high concentrations of supercooled drops at upper levels, high concentrations of small ice crystals in cloud anvils leading to high optical depth, and lightning in the eyewalls of hurricanes—indicates that the traditional view of the microphysics of deep tropical maritime clouds requires, possibly, some revisions. In the present study it is shown that the observed phenomena listed above can be attributed to the presence of small cloud condensation nuclei (CCN) with diameters less than about 0.05 μm. An increase in vertical velocity above cloud base can lead to an increase in supersaturation and to activation of the smallest CCN, resulting in production of new droplets several kilometers above the cloud base. A significant increase in supersaturation can be also caused by a decrease in droplet concentration during intense warm rain formation accompanied by an intense vertical velocity. This increase in supersaturation also can trigger in-cloud nucleation and formation of small droplets. Another reason for an increase in supersaturation and in-cloud nucleation can be riming, resulting in a decrease in droplet concentration. It has been shown that successive growth of new nucleated droplets increases supercooled water content and leads to significant ice crystal concentrations aloft. The analysis of the synergetic effect of the smallest CCN and giant CCN on production of supercooled water and ice crystals in cloud anvils allows reconsideration of the role of giant CCN. Significant effects of small aerosols on precipitation and cloud updrafts have been found. The possible role of these small aerosols as well as small aerosols with combination of giant CCN in creating conditions favorable for lightning in deep maritime clouds is discussed.


Atmosphere ◽  
2021 ◽  
Vol 13 (1) ◽  
pp. 15
Author(s):  
Somayeh Arghavani ◽  
Clémence Rose ◽  
Sandra Banson ◽  
Aurelia Lupascu ◽  
Mathieu Gouhier ◽  
...  

We investigated the role of the passive volcanic plume of Mount Etna (Italy) in the formation of new particles in the size range of 2.5–10 nm through the gas-to-particle nucleation of sulfuric acid (H2SO4) precursors, formed from the oxidation of SO2, and their evolution to particles with diameters larger than 100 nm. Two simulations were performed using the Weather Research and Forecasting Model coupled with chemistry (WRF-Chem) under the same configuration, except for the nucleation parameterization implemented in the model: the activation nucleation parameterization (JS1 = 2.0 × 10−6 × (H2SO4)) in the first simulation (S1) and a new parameterization for nucleation (NPN) (JS2 = 1.844 × 10−8 × (H2SO4)1.12) in the second simulation (S2). The comparison of the numerical results with the observations shows that, on average, NPN improves the performance of the model in the prediction of the H2SO4 concentrations, newly-formed particles (~2.5–10 nm), and their growth into larger particles (10–100 nm) by decreasing the rates of H2SO4 consumption and nucleation relative to S1. In addition, particles formed in the plume do not grow into cloud condensation nuclei (CCN) sizes (100–215 nm) within a few hours of the vent (tens of km). However, tracking the size evolution of simulated particles along the passive plume indicates the downwind formation of particles larger than 100 nm more than 100 km far from the vent with relatively high concentrations relative to the background (more than 1500 cm−3) in S2. These particles, originating in the volcanic source, could affect the chemical and microphysical properties of clouds and exert regional climatic effects over time.


2010 ◽  
Vol 10 (12) ◽  
pp. 30613-30650 ◽  
Author(s):  
G. Grell ◽  
S. R. Freitas ◽  
M. Stuefer ◽  
J. Fast

Abstract. A plume rise algorithm for wildfires was included in WRF-Chem, and applied to look at the impact of intense wildfires during the 2004 Alaska wildfire season on weather simulations using model resolutions of 10 km and 2 km. Biomass burning emissions were estimated using a biomass burning emissions model. In addition a 1-D time dependent cloud model was used online in WRF-Chem to estimate injection heights as well as the final emission rates. It was shown that with the inclusion of the intense wildfires of the 2004 fire season in the model simulations the interaction of the aerosols with the atmospheric radiation lead to significant modifications of vertical profiles of temperature and moisture in cloud-free areas. On the other hand, when clouds were present, the high concentrations of fine aerosol (PM2.5) and the resulting large numbers of Cloud Condensation Nuclei (CCN) had a strong impact on clouds and microphysics, with decreased precipitation coverage and precipitation amounts during the first 12 h of the integration, but significantly stronger storms during the afternoon hours.


Sign in / Sign up

Export Citation Format

Share Document