scholarly journals The Relationship of Transient Upper-Level Troughs to Variability of the North American Monsoon System

2009 ◽  
Vol 22 (15) ◽  
pp. 4213-4227 ◽  
Author(s):  
Stephen W. Bieda ◽  
Christopher L. Castro ◽  
Steven L. Mullen ◽  
Andrew C. Comrie ◽  
Erik Pytlak

Abstract Relationships between transient upper-tropospheric troughs and warm season convective activity over the southwest United States and northern Mexico are explored. Analysis of geopotential height and vorticity fields from the North American Regional Reanalysis and cloud-to-ground lightning data indicates that the passage of mobile inverted troughs (IVs) significantly enhances convection when it coincides with the peak diurnal cycle (1800–0900 UTC) over the North American monsoon (NAM) region. The preferred tracks of IVs during early summer are related to the dominant modes of Pacific sea surface temperature (SST) variability. When La Niña–like (El Niño–like) conditions prevail in the tropical Pacific and the eastern North Pacific has a horseshoe-shaped negative (positive) SST anomaly, IVs preferentially track farther north (south) and are slightly (typically one IV) more (less) numerous. These results point to the important role that synoptic-scale disturbances play in modulating the diurnal cycle of precipitation over the NAM region and the significant impact that the statistically supported low-frequency Pacific SST anomalies exert on the occurrence and track of these synoptic transients.

2012 ◽  
Vol 25 (23) ◽  
pp. 8212-8237 ◽  
Author(s):  
Christopher L. Castro ◽  
Hsin-I Chang ◽  
Francina Dominguez ◽  
Carlos Carrillo ◽  
Jae-Kyung Schemm ◽  
...  

Abstract Global climate models are challenged to represent the North American monsoon, in terms of its climatology and interannual variability. To investigate whether a regional atmospheric model can improve warm season forecasts in North America, a retrospective Climate Forecast System (CFS) model reforecast (1982–2000) and the corresponding NCEP–NCAR reanalysis are dynamically downscaled with the Weather Research and Forecasting model (WRF), with similar parameterization options as used for high-resolution numerical weather prediction and a new spectral nudging capability. The regional model improves the climatological representation of monsoon precipitation because of its more realistic representation of the diurnal cycle of convection. However, it is challenged to capture organized, propagating convection at a distance from terrain, regardless of the boundary forcing data used. Dynamical downscaling of CFS generally yields modest improvement in surface temperature and precipitation anomaly correlations in those regions where it is already positive in the global model. For the North American monsoon region, WRF adds value to the seasonally forecast temperature only in early summer and does not add value to the seasonally forecast precipitation. CFS has a greater ability to represent the large-scale atmospheric circulation in early summer because of the influence of Pacific SST forcing. The temperature and precipitation anomaly correlations in both the global and regional model are thus relatively higher in early summer than late summer. As the dominant modes of early warm season precipitation are better represented in the regional model, given reasonable large-scale atmospheric forcing, dynamical downscaling will add value to warm season seasonal forecasts. CFS performance appears to be inconsistent in this regard.


2013 ◽  
Vol 26 (4) ◽  
pp. 1432-1444 ◽  
Author(s):  
James D. Means

Abstract Precipitable water derived from archived global positioning system (GPS) zenith travel-time delays is used to describe the seasonal and interannual variation of the North American monsoon in California and Nevada. A 3-hourly dataset of precipitable water from 2003 to 2009, for over 500 sites in California and Nevada using temperature and pressure interpolated from the North American Regional Reanalysis (NARR), is constructed to study the temporal and spatial extent of the North American monsoon in the desert regions of California and Nevada. The statistical distribution of precipitable water values is shown to delineate the region that is most often affected by the monsoonal influence. A normalized precipitable water index is employed to indicate when the monsoon starts and stops and to investigate spatial variability. The GPS network provides much higher spatial resolution than other meteorological networks using surface-based methods, such as dewpoint criteria and rainfall, and is seen to contain comparable ability in capturing temporal variations. This dataset reveals the northwestward propagation of the monsoon onset both synoptically and seasonally. The GPS observations indicate that in the mean the decay of the monsoon is less well defined than the onset. Seven-year reanalysis 700-mb geopotential height composites for the monsoon onset and 3 days prior indicate that the onset of the monsoon is associated with a shift in the synoptic pattern characterized by upper-level high pressure building from the east and offshore troughing retreating to the northwest.


2008 ◽  
Vol 21 (4) ◽  
pp. 771-787 ◽  
Author(s):  
Emily J. Becker ◽  
Ernesto Hugo Berbery

Abstract The structure of the diurnal cycle of warm-season precipitation and its associated fields during the North American monsoon are examined for the core monsoon region and for the southwestern United States, using a diverse set of observations, analyses, and forecasts from the North American Monsoon Experiment field campaign of 2004. Included are rain gauge and satellite estimates of precipitation, Eta Model forecasts, and the North American Regional Reanalysis (NARR). Daily rain rates are of about the same magnitude in all datasets with the exception of the Climate Prediction Center (CPC) Morphing (CMORPH) technique, which exhibits markedly higher precipitation values. The diurnal cycle of precipitation within the core region occurs earlier in the day at higher topographic elevations, evolving with a westward shift of the maximum. This shift appears in the observations, reanalysis, and, while less pronounced, in the model forecasts. Examination of some of the fields associated with this cycle, including convective available potential energy (CAPE), convective inhibition (CIN), and moisture flux convergence (MFC), reveals that the westward shift appears in all of them, but more prominently in the latter. In general, warm-season precipitation in southern Arizona and parts of New Mexico shows a strong effect due to northward moisture surges from the Gulf of California. A reported positive bias in the NARR northward winds over the Gulf of California limits their use with confidence for studies of the moist surges along the Gulf; thus, the analysis is complemented with operational analysis and the Eta Model short-term simulations. The nonsurge diurnal cycle of precipitation lags the CAPE maximum by 6 h and is simultaneous with a minimum of CIN, while the moisture flux remains divergent throughout the day. During surges, CAPE and CIN have modifications only to the amplitude of their cycles, but the moisture flux becomes strongly convergent about 6 h before the precipitation maximum, suggesting a stronger role in the development of precipitation.


2013 ◽  
Vol 70 (6) ◽  
pp. 1710-1726 ◽  
Author(s):  
John D. Tuttle ◽  
Chris A. Davis

Abstract Traveling deep tropospheric disturbances of wavelengths ~1500 km (short waves) have long been known to play an important role in the initiation and maintenance of warm-season convection. To date, relatively few studies have formally documented the climatology of short waves and their relationship to the diurnal heating cycle, the topography, and the diurnal cycle of precipitation. Those that did had to rely on low-resolution global analyses and often could not track short waves across mountain barriers. In this study, 10 yr of the (32 km) NCEP North American Regional Reanalysis (NARR) are used to objectively identify and track short waves in the North American domain. Statistics of short-wave span, duration, phase speed, latitudinal extent, and locations of preferred intensification/decay are presented. Some of the key findings from the climatology include that the lee (windward) of mountain barriers are preferred regions of intensification (decay) and short waves show little evidence of a diurnal cycle and can pass a given point at any time of the day. The second part of the study focuses on the role that short waves play in modulating the diurnal cycle of propagating convection east of the Rocky Mountains. Depending on the timing of short-wave passage, short waves may either significantly enhance the precipitation above the mean or completely disrupt the normal diurnal cycle, causing precipitation to develop at times and locations where it normally does not. While short waves play an important role in modulating the mean precipitation patterns their role is considered to be secondary in nature. The diurnal precipitation signature is prominent even when short waves are not present.


2007 ◽  
Vol 135 (6) ◽  
pp. 2168-2184 ◽  
Author(s):  
Gregory L. West ◽  
W. James Steenburgh ◽  
William Y. Y. Cheng

Abstract Spurious grid-scale precipitation (SGSP) occurs in many mesoscale numerical weather prediction models when the simulated atmosphere becomes convectively unstable and the convective parameterization fails to relieve the instability. Case studies presented in this paper illustrate that SGSP events are also found in the North American Regional Reanalysis (NARR) and are accompanied by excessive maxima in grid-scale precipitation, vertical velocity, moisture variables (e.g., relative humidity and precipitable water), mid- and upper-level equivalent potential temperature, and mid- and upper-level absolute vorticity. SGSP events in environments favorable for high-based convection can also feature low-level cold pools and sea level pressure maxima. Prior to 2003, retrospectively generated NARR analyses feature an average of approximately 370 SGSP events annually. Beginning in 2003, however, NARR analyses are generated in near–real time by the Regional Climate Data Assimilation System (R-CDAS), which is identical to the retrospective NARR analysis system except for the input precipitation and ice cover datasets. Analyses produced by the R-CDAS feature a substantially larger number of SGSP events with more than 4000 occurring in the original 2003 analyses. An oceanic precipitation data processing error, which resulted in a reprocessing of NARR analyses from 2003 to 2005, only partially explains this increase since the reprocessed analyses still produce approximately 2000 SGSP events annually. These results suggest that many NARR SGSP events are not produced by shortcomings in the underlying Eta Model, but by the specification of anomalous latent heating when there is a strong mismatch between modeled and assimilated precipitation. NARR users should ensure that they are using the reprocessed NARR analyses from 2003 to 2005 and consider the possible influence of SGSP on their findings, particularly after the transition to the R-CDAS.


2010 ◽  
Vol 138 (9) ◽  
pp. 3540-3555 ◽  
Author(s):  
Zachary O. Finch ◽  
Richard H. Johnson

Abstract Upper-level inverted troughs (IVs) associated with midlatitude breaking Rossby waves or tropical upper-troposphere troughs (TUTTs) have been identified as important contributors to the variability of rainfall in the North American monsoon (NAM) region. However, little attention has been given to the dynamics of these systems owing to the sparse observational network over the NAM region. High temporal and spatial observations taken during the 2004 North American Monsoon Experiment (NAME) are utilized to analyze a significant IV that passed over northwestern Mexico from 10 to 13 July 2004. The Colorado State University gridded dataset, which is independent of model analysis over land, is the primary data source used in this study. Results show that the 10–13 July IV disturbance was characterized by a warm anomaly around 100 hPa and a cold anomaly that extended from 200 to 700 hPa. The strongest cyclonic circulation was in the upper levels around 200 hPa. Quasigeostrophic (QG) diagnostics indicate that the upper-level low forced weak subsidence (weak rising motion) to the west (east) of its center. Net downward motion to the west was a result of the Laplacian of thermal advection (forcing subsidence) outweighing differential vorticity advection (forcing weak upward motion). Despite the QG forcing of downward motion west of the upper-level IV, enhanced convection occurred west of the IV center along the western slopes of the Sierra Madre Occidental (SMO). This seemingly contradictory behavior can be explained by noting that the upper-level IV induced a midlevel cyclonic circulation, with northeasterly (southeasterly) midlevel flow to the west (east) of its center. Increased mesoscale organization of convection along the SMO foothills was found to be collocated with IV-enhanced northeasterly midlevel flow and anomalous northeasterly shear on the western (leading) flank of the system. It is proposed that the upper-level IV increased the SMO-perpendicular midlevel flow as well as the wind shear, thereby creating an environment favorable for convective storms to grow upscale as they moved off the high terrain.


2012 ◽  
Vol 25 (11) ◽  
pp. 3953-3969 ◽  
Author(s):  
Cuauhtémoc Turrent ◽  
Tereza Cavazos

In this study the results of two regional fifth-generation Pennsylvania State University–NCAR Mesoscale Model (MM5) simulations forced at their boundaries with low-pass-filtered North American Regional Reanalysis (NARR) composite fields from which synoptic-scale variability was removed are presented. The filtered NARR data are also assimilated into the inner domain through the use of field nudging. The purpose of this research is to investigate wet and dry onset modes in the core region of the North American monsoon (NAM). Key features of the NAM that are present in the NARR fields and assimilated into the regional simulations include the position of the midlevel anticyclone, low-level circulation over the Gulf of California, and moisture flux patterns into the core monsoon region, for which the eastern Pacific is the likely primary source of moisture. The model develops a robust diurnal cycle of deep convection over the peaks of the Sierra Madre Occidental (SMO) that results solely from its radiation scheme and internal dynamics, in spite of the field nudging. The wet onset mode is related to a regional land–sea thermal contrast (LSTC) that is ~2°C higher than in the dry mode, and is further characterized by a northward-displaced midlevel anticyclone, a stronger surface pressure gradient along the Gulf of California, larger mean moisture fluxes into the core region from the eastern Pacific, a stronger diurnal cycle of deep convection, and the more northward distribution of precipitation along the axis of the SMO. A proposed regional LSTC mechanism for NAM onset interannual variability is consistent with the differences between both onset modes.


2009 ◽  
Vol 22 (24) ◽  
pp. 6716-6740 ◽  
Author(s):  
D. S. Gutzler ◽  
L. N. Long ◽  
J. Schemm ◽  
S. Baidya Roy ◽  
M. Bosilovich ◽  
...  

Abstract The second phase of the North American Monsoon Experiment (NAME) Model Assessment Project (NAMAP2) was carried out to provide a coordinated set of simulations from global and regional models of the 2004 warm season across the North American monsoon domain. This project follows an earlier assessment, called NAMAP, that preceded the 2004 field season of the North American Monsoon Experiment. Six global and four regional models are all forced with prescribed, time-varying ocean surface temperatures. Metrics for model simulation of warm season precipitation processes developed in NAMAP are examined that pertain to the seasonal progression and diurnal cycle of precipitation, monsoon onset, surface turbulent fluxes, and simulation of the low-level jet circulation over the Gulf of California. Assessment of the metrics is shown to be limited by continuing uncertainties in spatially averaged observations, demonstrating that modeling and observational analysis capabilities need to be developed concurrently. Simulations of the core subregion (CORE) of monsoonal precipitation in global models have improved since NAMAP, despite the lack of a proper low-level jet circulation in these simulations. Some regional models run at higher resolution still exhibit the tendency observed in NAMAP to overestimate precipitation in the CORE subregion; this is shown to involve both convective and resolved components of the total precipitation. The variability of precipitation in the Arizona/New Mexico (AZNM) subregion is simulated much better by the regional models compared with the global models, illustrating the importance of transient circulation anomalies (prescribed as lateral boundary conditions) for simulating precipitation in the northern part of the monsoon domain. This suggests that seasonal predictability derivable from lower boundary conditions may be limited in the AZNM subregion.


2007 ◽  
Vol 20 (9) ◽  
pp. 1628-1648 ◽  
Author(s):  
Richard H. Johnson ◽  
Paul E. Ciesielski ◽  
Brian D. McNoldy ◽  
Peter J. Rogers ◽  
Richard K. Taft

Abstract The 2004 North American Monsoon Experiment (NAME) provided an unprecedented observing network for studying the structure and evolution of the North American monsoon. This paper focuses on multiscale characteristics of the flow during NAME from the large scale to the mesoscale using atmospheric sounding data from the enhanced observing network. The onset of the 2004 summer monsoon over the NAME region accompanied the typical northward shift of the upper-level anticyclone or monsoon high over northern Mexico into the southwestern United States, but in 2004 this shift occurred slightly later than normal and the monsoon high did not extend as far north as usual. Consequently, precipitation over the southwestern United States was slightly below normal, although increased troughiness over the Great Plains contributed to increased rainfall over eastern New Mexico and western Texas. The first major pulse of moisture into the Southwest occurred around 13 July in association with a strong Gulf of California surge. This surge was linked to the westward passages of Tropical Storm Blas to the south and an upper-level inverted trough over northern Texas. The development of Blas appeared to be favored as an easterly wave moved into the eastern Pacific during the active phase of a Madden–Julian oscillation. On the regional scale, sounding data reveal a prominent sea breeze along the east shore of the Gulf of California, with a deep return flow as a consequence of the elevated Sierra Madre Occidental (SMO) immediately to the east. Subsidence produced a dry layer over the gulf, whereas a deep moist layer existed over the west slopes of the SMO. A prominent nocturnal low-level jet was present on most days over the northern gulf. The diurnal cycle of heating and moistening (Q1 and Q2) over the SMO was characterized by deep convective profiles in the mid- to upper troposphere at 1800 LT, followed by stratiform-like profiles at midnight, consistent with the observed diurnal evolution of precipitation over this coastal mountainous region. The analyses in the core NAME domain are based on a gridded dataset derived from atmospheric soundings only and, therefore, should prove useful in validating reanalyses and regional models.


Sign in / Sign up

Export Citation Format

Share Document